These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28802404)

  • 41. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development.
    Le Chevalier F; Cascioferro A; Majlessi L; Herrmann JL; Brosch R
    Future Microbiol; 2014; 9(8):969-85. PubMed ID: 25302954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The quest for the holy grail: new antitubercular chemical entities, targets and strategies.
    Huszár S; Chibale K; Singh V
    Drug Discov Today; 2020 Apr; 25(4):772-780. PubMed ID: 32062007
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis.
    Liu Y; Zhou S; Deng Q; Li X; Meng J; Guan Y; Li C; Xiao C
    Tuberculosis (Edinb); 2016 Mar; 97():38-46. PubMed ID: 26980494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strategies in anti-Mycobacterium tuberculosis drug discovery based on phenotypic screening.
    Grzelak EM; Choules MP; Gao W; Cai G; Wan B; Wang Y; McAlpine JB; Cheng J; Jin Y; Lee H; Suh JW; Pauli GF; Franzblau SG; Jaki BU; Cho S
    J Antibiot (Tokyo); 2019 Oct; 72(10):719-728. PubMed ID: 31292530
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A multi-stress model for high throughput screening against non-replicating Mycobacterium tuberculosis.
    Gold B; Warrier T; Nathan C
    Methods Mol Biol; 2015; 1285():293-315. PubMed ID: 25779324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. TB drug development: immunology at the table.
    Nathan C; Barry CE
    Immunol Rev; 2015 Mar; 264(1):308-18. PubMed ID: 25703568
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hollow Fiber System Model for Tuberculosis: The European Medicines Agency Experience.
    Cavaleri M; Manolis E
    Clin Infect Dis; 2015 Aug; 61 Suppl 1():S1-4. PubMed ID: 26224766
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis.
    John SF; Aniemeke E; Ha NP; Chong CR; Gu P; Zhou J; Zhang Y; Graviss EA; Liu JO; Olaleye OA
    Tuberculosis (Edinb); 2016 Dec; 101S():S73-S77. PubMed ID: 27856197
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Validation of Mycobacterium tuberculosis dihydroneopterin aldolase as a molecular target for anti-tuberculosis drug development.
    Falcão VC; Villela AD; Rodrigues-Junior VS; Pissinate K; Eichler P; Pinto AF; Basso LA; Santos DS; Bizarro CV
    Biochem Biophys Res Commun; 2017 Apr; 485(4):814-819. PubMed ID: 28257847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Multistress Model for High Throughput Screening Against Nonreplicating Mycobacterium tuberculosis.
    Gold B; Warrier T; Nathan C
    Methods Mol Biol; 2021; 2314():611-635. PubMed ID: 34235673
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mycobacterium tuberculosis Reporter Strains as Tools for Drug Discovery and Development.
    Abramovitch RB
    IUBMB Life; 2018 Sep; 70(9):818-825. PubMed ID: 29707888
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lansoprazole is an antituberculous prodrug targeting cytochrome bc1.
    Rybniker J; Vocat A; Sala C; Busso P; Pojer F; Benjak A; Cole ST
    Nat Commun; 2015 Jul; 6():7659. PubMed ID: 26158909
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis.
    Zhang YJ; Li XJ; Mi KX
    Yi Chuan; 2016 Oct; 38(10):918-927. PubMed ID: 27806933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational models for tuberculosis drug discovery.
    Ekins S; Freundlich JS
    Methods Mol Biol; 2013; 993():245-62. PubMed ID: 23568475
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mycobacterium tuberculosis cytochrome P450 enzymes: a cohort of novel TB drug targets.
    Hudson SA; McLean KJ; Munro AW; Abell C
    Biochem Soc Trans; 2012 Jun; 40(3):573-9. PubMed ID: 22616869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Progress on mechanism of ethambutol resistance in Mycobacterium Tuberculosis.
    Wang T; Jiao WW; Shen AD
    Yi Chuan; 2016 Oct; 38(10):910-917. PubMed ID: 27806932
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Challenges and opportunities in tuberculosis drug discovery: an industry perspective.
    Shirude PS; Ramachandran S; Hosagrahara V
    Future Med Chem; 2013 Apr; 5(5):499-501. PubMed ID: 23573967
    [No Abstract]   [Full Text] [Related]  

  • 58. Future target-based drug discovery for tuberculosis?
    Kana BD; Karakousis PC; Parish T; Dick T
    Tuberculosis (Edinb); 2014 Dec; 94(6):551-6. PubMed ID: 25458615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diarylquinolines, synthesis pathways and quantitative structure--activity relationship studies leading to the discovery of TMC207.
    Guillemont J; Meyer C; Poncelet A; Bourdrez X; Andries K
    Future Med Chem; 2011 Sep; 3(11):1345-60. PubMed ID: 21879841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trends in discovery of new drugs for tuberculosis therapy.
    Riccardi G; Pasca MR
    J Antibiot (Tokyo); 2014 Sep; 67(9):655-9. PubMed ID: 25095807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.