These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28802707)

  • 1. Boosting innate immunity to sustainably control diseases in crops.
    Nicaise V
    Curr Opin Virol; 2017 Oct; 26():112-119. PubMed ID: 28802707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving immunity in crops: new tactics in an old game.
    Wulff BB; Horvath DM; Ward ER
    Curr Opin Plant Biol; 2011 Aug; 14(4):468-76. PubMed ID: 21531167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyramiding resistance-conferring gene sequences in crops.
    Fuchs M
    Curr Opin Virol; 2017 Oct; 26():36-42. PubMed ID: 28755651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant immunity against viruses: antiviral immune receptors in focus.
    Calil IP; Fontes EPB
    Ann Bot; 2017 Mar; 119(5):711-723. PubMed ID: 27780814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of engineered resistance to viruses in crops of the developing world, with emphasis on sub-Saharan Africa.
    Kreuze JF; Valkonen JP
    Curr Opin Virol; 2017 Oct; 26():90-97. PubMed ID: 28800552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of peptide aptamers, cationic peptides and artificial zinc finger proteins to generate resistance to plant viruses.
    Sera T
    Curr Opin Virol; 2017 Oct; 26():120-124. PubMed ID: 28806695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Impact of "Coat Protein-Mediated Virus Resistance" in Applied Plant Pathology and Basic Research.
    Lindbo JA; Falk BW
    Phytopathology; 2017 Jun; 107(6):624-634. PubMed ID: 28409526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pivoting the plant immune system from dissection to deployment.
    Dangl JL; Horvath DM; Staskawicz BJ
    Science; 2013 Aug; 341(6147):746-51. PubMed ID: 23950531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer and modification of NLR proteins for virus resistance in plants.
    Moffett P
    Curr Opin Virol; 2017 Oct; 26():43-48. PubMed ID: 28755652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops.
    Silva MS; Arraes FBM; Campos MA; Grossi-de-Sa M; Fernandez D; Cândido ES; Cardoso MH; Franco OL; Grossi-de-Sa MF
    Plant Sci; 2018 May; 270():72-84. PubMed ID: 29576088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer and engineering of immune receptors to improve recognition capacities in crops.
    Rodriguez-Moreno L; Song Y; Thomma BP
    Curr Opin Plant Biol; 2017 Aug; 38():42-49. PubMed ID: 28472757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.
    Anderson JA; Gipmans M; Hurst S; Layton R; Nehra N; Pickett J; Shah DM; Souza TL; Tripathi L
    J Agric Food Chem; 2016 Jan; 64(2):383-93. PubMed ID: 26785813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cutting-edge technology to generate plant immunity against geminiviruses.
    Cana-Quijada P; Romero-Rodríguez B; Vallejo PG; Castillo AG; Bejarano ER
    Curr Opin Virol; 2020 Jun; 42():58-64. PubMed ID: 32698102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops.
    Deng Y; Ning Y; Yang DL; Zhai K; Wang GL; He Z
    Mol Plant; 2020 Oct; 13(10):1402-1419. PubMed ID: 32979566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genes involved in nonhost disease resistance as a key to engineer durable resistance in crops.
    Fonseca JP; Mysore KS
    Plant Sci; 2019 Feb; 279():108-116. PubMed ID: 30709487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects for engineering and improvement of cross-protective virus strains.
    Ziebell H; MacDiarmid R
    Curr Opin Virol; 2017 Oct; 26():8-14. PubMed ID: 28743041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic modification to improve disease resistance in crops.
    van Esse HP; Reuber TL; van der Does D
    New Phytol; 2020 Jan; 225(1):70-86. PubMed ID: 31135961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAi-mediated resistance to viruses: a critical assessment of methodologies.
    Pooggin MM
    Curr Opin Virol; 2017 Oct; 26():28-35. PubMed ID: 28753441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oomycete interactions with plants: infection strategies and resistance principles.
    Fawke S; Doumane M; Schornack S
    Microbiol Mol Biol Rev; 2015 Sep; 79(3):263-80. PubMed ID: 26041933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics and plant disease: advances in combating a major threat to the global food supply.
    Rampitsch C; Bykova NV
    Proteomics; 2012 Feb; 12(4-5):673-90. PubMed ID: 22246663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.