These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28802948)

  • 1. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform.
    Kovalishyn V; Abramenko N; Kopernyk I; Charochkina L; Metelytsia L; Tetko IV; Peijnenburg W; Kustov L
    Food Chem Toxicol; 2018 Feb; 112():507-517. PubMed ID: 28802948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles.
    Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J
    Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imidazolium ionic liquids as effective antiseptics and disinfectants against drug resistant S. aureus: In silico and in vitro studies.
    Hodyna D; Kovalishyn V; Semenyuta I; Blagodatnyi V; Rogalsky S; Metelytsia L
    Comput Biol Chem; 2018 Apr; 73():127-138. PubMed ID: 29494924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotoxicity induced by metal oxide nanoparticles: a weight of evidence study and effect of particle surface and electronic properties.
    Golbamaki A; Golbamaki N; Sizochenko N; Rasulev B; Leszczynski J; Benfenati E
    Nanotoxicology; 2018 Dec; 12(10):1113-1129. PubMed ID: 29888633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information.
    Sushko I; Novotarskyi S; Körner R; Pandey AK; Rupp M; Teetz W; Brandmaier S; Abdelaziz A; Prokopenko VV; Tanchuk VY; Todeschini R; Varnek A; Marcou G; Ertl P; Potemkin V; Grishina M; Gasteiger J; Schwab C; Baskin II; Palyulin VA; Radchenko EV; Welsh WJ; Kholodovych V; Chekmarev D; Cherkasov A; Aires-de-Sousa J; Zhang QY; Bender A; Nigsch F; Patiny L; Williams A; Tkachenko V; Tetko IV
    J Comput Aided Mol Des; 2011 Jun; 25(6):533-54. PubMed ID: 21660515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across.
    Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T
    Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.
    Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J
    Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-SAR Modeling for Predicting the Cytotoxicity of Metal Oxide Nanoparticles to PaCa2.
    Shi H; Pan Y; Yang F; Cao J; Tan X; Yuan B; Jiang J
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method.
    Fjodorova N; Novic M; Gajewicz A; Rasulev B
    Nanotoxicology; 2017 May; 11(4):475-483. PubMed ID: 28330416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR Study of Some 1,3-Oxazolylphosphonium Derivatives as New Potent Anti-Candida Agents and Their Toxicity Evaluation.
    Trush MM; Kovalishyn V; Ocheretniuk AD; Kobzar OL; Kachaeva MV; Brovarets VS; Metelytsia LO
    Curr Drug Discov Technol; 2019; 16(2):204-209. PubMed ID: 29669499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the Development of Global Nano-Quantitative Structure-Property Relationship Models: Zeta Potentials of Metal Oxide Nanoparticles.
    Toropov AA; Sizochenko N; Toropova AP; Leszczynski J
    Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29662037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of structure-activity relationship for metal oxide nanoparticles.
    Liu R; Zhang HY; Ji ZX; Rallo R; Xia T; Chang CH; Nel A; Cohen Y
    Nanoscale; 2013 Jun; 5(12):5644-53. PubMed ID: 23689214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning predictions of concentration-specific aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish.
    Gousiadou C; Marchese Robinson RL; Kotzabasaki M; Doganis P; Wilkins TA; Jia X; Sarimveis H; Harper SL
    Nanotoxicology; 2021 May; 15(4):446-476. PubMed ID: 33586589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies.
    Gajewicz A; Schaeublin N; Rasulev B; Hussain S; Leszczynska D; Puzyn T; Leszczynski J
    Nanotoxicology; 2015 May; 9(3):313-25. PubMed ID: 24983896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM).
    Oprisiu I; Novotarskyi S; Tetko IV
    J Cheminform; 2013 Jan; 5(1):4. PubMed ID: 23321019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions.
    Toropova AP; Toropov AA; Leszczynski J; Sizochenko N
    Environ Toxicol Pharmacol; 2021 Aug; 86():103665. PubMed ID: 33895354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review.
    Li J; Wang C; Yue L; Chen F; Cao X; Wang Z
    Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the toxicities of metal oxide nanoparticles based on support vector regression with a residual bootstrapping method.
    Zhai X; Chen M; Lu W
    Toxicol Mech Methods; 2018 Jul; 28(6):440-449. PubMed ID: 29644916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.