These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28803102)

  • 1. Kinetics of the release of elemental precursors of syngas and syngas contaminants during devolatilization of switchgrass.
    Oyedeji O; Daw CS; Labbe N; Ayers P; Abdoulmoumine N
    Bioresour Technol; 2017 Nov; 244(Pt 1):525-533. PubMed ID: 28803102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-gasification of biosolids with biomass: Thermogravimetric analysis and pilot scale study in a bubbling fluidized bed reactor.
    Yu MM; Masnadi MS; Grace JR; Bi XT; Lim CJ; Li Y
    Bioresour Technol; 2015 Jan; 175():51-8. PubMed ID: 25459803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition.
    Yan F; Luo SY; Hu ZQ; Xiao B; Cheng G
    Bioresour Technol; 2010 Jul; 101(14):5633-7. PubMed ID: 20194019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.
    Yuan T; Tahmasebi A; Yu J
    Bioresour Technol; 2015 Jan; 175():333-41. PubMed ID: 25459840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.
    Long J; Song H; Jun X; Sheng S; Lun-Shi S; Kai X; Yao Y
    Bioresour Technol; 2012 Jul; 116():278-84. PubMed ID: 22525260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues.
    Yuan R; Yu S; Shen Y
    Waste Manag; 2019 Mar; 87():86-96. PubMed ID: 31109588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of torrefaction and densification on switchgrass pyrolysis products.
    Yang Z; Sarkar M; Kumar A; Tumuluru JS; Huhnke RL
    Bioresour Technol; 2014 Dec; 174():266-73. PubMed ID: 25463807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.
    Li D; Briens C; Berruti F
    Bioresour Technol; 2015; 189():7-14. PubMed ID: 25863324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis.
    Wang S; Li Z; Bai X; Yi W; Fu P
    Bioresour Technol; 2018 Nov; 268():323-331. PubMed ID: 30092486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.
    Keown DM; Favas G; Hayashi J; Li CZ
    Bioresour Technol; 2005 Sep; 96(14):1570-7. PubMed ID: 15978989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple kinetic analysis of syngas during steam hydrogasification of biomass using a novel inverted batch reactor with instant high pressure feeding.
    Fan X; Liu Z; Norbeck JM; Park CS
    Bioresour Technol; 2016 Jan; 200():731-7. PubMed ID: 26562689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii.
    Basen M; Rhaesa AM; Kataeva I; Prybol CJ; Scott IM; Poole FL; Adams MW
    Bioresour Technol; 2014; 152():384-92. PubMed ID: 24316482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lime pretreatment of switchgrass at mild temperatures for ethanol production.
    Xu J; Cheng JJ; Sharma-Shivappa RR; Burns JC
    Bioresour Technol; 2010 Apr; 101(8):2900-3. PubMed ID: 20042332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syngas production by two-stage method of biomass catalytic pyrolysis and gasification.
    Xie Q; Kong S; Liu Y; Zeng H
    Bioresour Technol; 2012 Apr; 110():603-9. PubMed ID: 22342084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.
    Lahijani P; Zainal ZA; Mohamed AR; Mohammadi M
    Bioresour Technol; 2013 Sep; 144():288-95. PubMed ID: 23880130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis Characteristics and Reaction Mechanisms of Pine Needles.
    Zhang D; Pan R; Chen R; Xu X
    Appl Biochem Biotechnol; 2019 Dec; 189(4):1056-1083. PubMed ID: 31165393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor.
    Amutio M; Lopez G; Alvarez J; Olazar M; Bilbao J
    Bioresour Technol; 2015 Oct; 194():225-32. PubMed ID: 26203554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sequential method to analyze the kinetics of biomass pyrolysis.
    Huang YF; Kuan WH; Chiueh PT; Lo SL
    Bioresour Technol; 2011 Oct; 102(19):9241-6. PubMed ID: 21803573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.