These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28803113)

  • 1. How a decreased fibrillar interconnectivity influences stiffness and swelling properties during early cartilage degeneration.
    Nickien M; Thambyah A; Broom ND
    J Mech Behav Biomed Mater; 2017 Nov; 75():390-398. PubMed ID: 28803113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ultrastructure of cartilage tissue and its swelling response in relation to matrix health.
    Brown ETT; Simons JMLJW; Thambyah A
    J Anat; 2022 Jan; 240(1):107-119. PubMed ID: 34333796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of early degenerative changes on the vulnerability of articular cartilage to impact-induced injury.
    Workman J; Thambyah A; Broom N
    Clin Biomech (Bristol, Avon); 2017 Mar; 43():40-49. PubMed ID: 28199881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of chondrocyte apoptosis to matrix degradation and swelling potential of osteoarthritic cartilage.
    Chen MH; Wang JL; Wong CY; Yao CC; Chen YJ; Jiang CC
    J Formos Med Assoc; 2005 Apr; 104(4):264-72. PubMed ID: 15909064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical significance of the zonally differentiated collagen network of articular cartilage in relation to tissue swelling.
    Brown ETT; Damen AHA; Thambyah A
    Clin Biomech (Bristol, Avon); 2020 Oct; 79():104926. PubMed ID: 32008842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On how degeneration influences load-bearing in the cartilage-bone system: a microstructural and micromechanical study.
    Thambyah A; Broom N
    Osteoarthritis Cartilage; 2007 Dec; 15(12):1410-23. PubMed ID: 17689989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How changes in fibril-level organization correlate with the macrolevel behavior of articular cartilage.
    Nickien M; Thambyah A; Broom N
    Wiley Interdiscip Rev Syst Biol Med; 2013; 5(4):495-509. PubMed ID: 23554314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How changes in interconnectivity affect the bulk properties of articular cartilage: a fibre network study.
    Bilton MA; Thambyah A; Clarke RJ
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1297-1315. PubMed ID: 29777321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concerning the ultrastructural origin of large-scale swelling in articular cartilage.
    Chen MH; Broom ND
    J Anat; 1999 Apr; 194 ( Pt 3)(Pt 3):445-61. PubMed ID: 10386781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical indicators of cartilage health: the relevance of compliance, thickness, swelling and fibrillar texture.
    Broom ND; Flachsmann R
    J Anat; 2003 Jun; 202(6):481-94. PubMed ID: 12846470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macro-, micro- and ultrastructural investigation of how degeneration influences the response of cartilage to loading.
    Thambyah A; Zhao JY; Bevill SL; Broom ND
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):206-15. PubMed ID: 22100095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.
    Quinn TM; Morel V
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):73-82. PubMed ID: 16715320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional effects of an interpenetrating polymer network on articular cartilage mechanical properties.
    Mäkelä JTA; Cooper BG; Korhonen RK; Grinstaff MW; Snyder BD
    Osteoarthritis Cartilage; 2018 Mar; 26(3):414-421. PubMed ID: 29326062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive osmotic properties of in situ human articular chondrocytes within non-degenerate and degenerate cartilage.
    Bush PG; Hall AC
    J Cell Physiol; 2005 Jul; 204(1):309-19. PubMed ID: 15668989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible changes in the 3D collagen fibril architecture during cyclic loading of healthy and degraded cartilage.
    Inamdar SR; Prévost S; Terrill NJ; Knight MM; Gupta HS
    Acta Biomater; 2021 Dec; 136():314-326. PubMed ID: 34563724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression.
    Bevill SL; Thambyah A; Broom ND
    Osteoarthritis Cartilage; 2010 Oct; 18(10):1310-8. PubMed ID: 20633674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of collagen network features to functional properties of engineered cartilage.
    Bastiaansen-Jenniskens YM; Koevoet W; de Bart AC; van der Linden JC; Zuurmond AM; Weinans H; Verhaar JA; van Osch GJ; Degroot J
    Osteoarthritis Cartilage; 2008 Mar; 16(3):359-66. PubMed ID: 17714957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.