These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 28803146)
21. Systematic understanding of char-volatile evolution and interaction mechanism during sewage sludge pyrolysis through in-situ tracking solid-state reaction and products fate. Yuan Z; Luo J; Ndudi EA; Ma W; Zhu N; Lou Z J Hazard Mater; 2022 Jun; 432():128669. PubMed ID: 35349847 [TBL] [Abstract][Full Text] [Related]
22. Study on the effect of conditioner on NO Cheng S; Yang T; Huang J; Tian H; Zhang W; Xin F; Qiao Y Waste Manag; 2024 Dec; 189():1-10. PubMed ID: 39137581 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive insight into co-pyrolysis of sewage sludge and tobacco stalk: Effects of mixing ratio and pyrolysis conditions on product distribution and characteristics. Song Q; Wang X; Zhang W; Wang X; Qian B; Ye Y Environ Res; 2023 Dec; 238(Pt 2):117271. PubMed ID: 37793589 [TBL] [Abstract][Full Text] [Related]
25. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis. Li T; Guo F; Li X; Liu Y; Peng K; Jiang X; Guo C Waste Manag; 2018 Jun; 76():544-554. PubMed ID: 29653883 [TBL] [Abstract][Full Text] [Related]
26. Tar-free fuel gas production from high temperature pyrolysis of sewage sludge. Zhang L; Xiao B; Hu Z; Liu S; Cheng G; He P; Sun L Waste Manag; 2014 Jan; 34(1):180-4. PubMed ID: 24220150 [TBL] [Abstract][Full Text] [Related]
27. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics. Zhao B; Xu X; Zeng F; Li H; Chen X Environ Sci Pollut Res Int; 2018 Jul; 25(20):19423-19435. PubMed ID: 29728972 [TBL] [Abstract][Full Text] [Related]
28. Valorization of rubberwood sawdust and sewage sludge by pyrolysis and co-pyrolysis using agitated bed reactor for producing biofuel or value-added products. Ali L; Palamanit A; Techato K; Baloch KA; Jutidamrongphan W Environ Sci Pollut Res Int; 2022 Jan; 29(1):1338-1363. PubMed ID: 34355326 [TBL] [Abstract][Full Text] [Related]
29. Effects of red mud on emission control of NO Xiao K; Guan R; Yang J; Li H; Yu Z; Liang S; Yu W; Hu J; Hou H; Liu B Waste Manag; 2019 Feb; 85():452-463. PubMed ID: 30803601 [TBL] [Abstract][Full Text] [Related]
30. Supercritical water pyrolysis of sewage sludge. Ma W; Du G; Li J; Fang Y; Hou L; Chen G; Ma D Waste Manag; 2017 Jan; 59():371-378. PubMed ID: 27836517 [TBL] [Abstract][Full Text] [Related]
31. Sustainable valorisation of sewage sludge via carbon dioxide-assisted pyrolysis. Kim M; Choi D; Jung S; Tsang YF; Jeong S; Kim Y; Kwon EE Environ Pollut; 2024 Oct; 358():124516. PubMed ID: 38986764 [TBL] [Abstract][Full Text] [Related]
32. Char and tar formation during hydrothermal gasification of dewatered sewage sludge in subcritical and supercritical water: Influence of reaction parameters and lumped reaction kinetics. Wang C; Zhu W; Zhang H; Chen C; Fan X; Su Y Waste Manag; 2019 Dec; 100():57-65. PubMed ID: 31520913 [TBL] [Abstract][Full Text] [Related]
33. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time. Yang X; Yuan C; Xu J; Zhang W Bioresour Technol; 2015 Mar; 179():602-605. PubMed ID: 25542402 [TBL] [Abstract][Full Text] [Related]
34. Catalytic Gasification and Reforming of Residual Biomass in a Bench Scale System with Low Cost Catalysts. Garcia L; Cordoba M; Dosso L; Nardi F; Vera C; Quiroga M; Busto M; Badano J Chempluschem; 2023 Dec; 88(12):e202300376. PubMed ID: 37857584 [TBL] [Abstract][Full Text] [Related]
35. Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content. Wang Y; Dong B; Fan Y; Hu Y; Zhai X; Deng C; Xu Y; Shen D; Dai X Chemosphere; 2019 Mar; 219():383-389. PubMed ID: 30551104 [TBL] [Abstract][Full Text] [Related]
36. Thermo-catalytic pyrolysis of sewage sludge and techno-economic analysis: The effect of synthetic zeolites and natural sourced catalysts. Csutoras B; Miskolczi N Bioresour Technol; 2024 May; 400():130676. PubMed ID: 38588783 [TBL] [Abstract][Full Text] [Related]
37. [Analysis on the target product from sewage sludge pyrolysis and experiments on using the char for enhancing plant cultivation]. Song XD; Chen DZ; Wang ZH; He W Huan Jing Ke Xue; 2011 Sep; 32(9):2604-9. PubMed ID: 22165228 [TBL] [Abstract][Full Text] [Related]
38. Insight into the Ex Situ Catalytic Pyrolysis of Biomass over Char Supported Metals Catalyst: Syngas Production and Tar Decomposition. Hu M; Cui B; Xiao B; Luo S; Guo D Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708401 [TBL] [Abstract][Full Text] [Related]
39. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Kim Y; Parker W Bioresour Technol; 2008 Mar; 99(5):1409-16. PubMed ID: 17383872 [TBL] [Abstract][Full Text] [Related]
40. Sulfur Transformation during Microwave and Conventional Pyrolysis of Sewage Sludge. Zhang J; Zuo W; Tian Y; Chen L; Yin L; Zhang J Environ Sci Technol; 2017 Jan; 51(1):709-717. PubMed ID: 27982577 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]