These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28803160)

  • 1. Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.
    Wang C; Chen Z; Cao W
    Ultrasonics; 2018 Jan; 82():130-133. PubMed ID: 28803160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic transducers working in the air with the continuous wave within the 50-500 kHz frequency range.
    Gudra T; Opielinski KJ
    Ultrasonics; 2004 Apr; 42(1-9):453-8. PubMed ID: 15047328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations of the barbell ultrasonic transducer operated in the full-wave vibrational mode.
    Fu Z; Xian X; Lin S; Wang C; Hu W; Li G
    Ultrasonics; 2012 Jul; 52(5):578-86. PubMed ID: 22273150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.
    Waag G; Hoff L; Norli P
    Ultrasonics; 2015 Feb; 56():332-9. PubMed ID: 25257299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation of acoustic waves from cylindrical polyvinylidene fluoride (PVDF) film confined in a concentric wall.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1653-9. PubMed ID: 18986955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational model to evaluate modulation of the acoustic field in an ultrasonic bioreactor by incorporation of a water layer bounded by an acoustic absorbent boundary layer.
    Rahimi A; Case N
    Ultrasonics; 2020 Apr; 103():106086. PubMed ID: 32070827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.
    Fan Z; Jiang W; Cai M; Wright WM
    Ultrasonics; 2016 Feb; 65():282-95. PubMed ID: 26464105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D analysis of interaction of Lamb waves with defects in loaded steel plates.
    Kazys R; Mazeika L; Barauskas R; Raisutis R; Cicenas V; Demcenko A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1127-30. PubMed ID: 16797639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.
    Qian Y; Harris NR
    Ultrasonics; 2014 Feb; 54(2):586-91. PubMed ID: 24025461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation impedance study of a capacitive micromachined ultrasonic transducer by finite element analysis.
    Bayram B
    J Acoust Soc Am; 2015 Aug; 138(2):614-23. PubMed ID: 26328680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis and optimization of a single-axis acoustic levitator.
    Andrade MA; Buiochi F; Adamowski JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):469-79. PubMed ID: 20178913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance matching network for high frequency ultrasonic transducer for cellular applications.
    Kim MG; Yoon S; Kim HH; Shung KK
    Ultrasonics; 2016 Feb; 65():258-67. PubMed ID: 26442434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation impedance and equivalent circuit for piezoelectric ultrasonic composite transducers of vibrational mode-conversion.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):139-49. PubMed ID: 22293744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design optimization of embedded ultrasonic transducers for concrete structures assessment.
    Dumoulin C; Deraemaeker A
    Ultrasonics; 2017 Aug; 79():18-33. PubMed ID: 28412656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional hybrid model for predicting air-coupled generation of guided waves in composite material plates.
    Masmoudi M; Castaings M
    Ultrasonics; 2012 Jan; 52(1):81-92. PubMed ID: 21782203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined Longitudinal and Surface Acoustic Wave Analysis for Determining Small Filling Levels in Curved Steel Containers.
    Metzenmacher M; Beugholt A; Geier D; Becker T
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of functionally graded piezoelectric ultrasonic transducers.
    Rubio WM; Buiochi F; Adamowski JC; Silva EC
    Ultrasonics; 2009 May; 49(4-5):484-94. PubMed ID: 19230947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Acoustic Impedance Matching Techniques for Piezoelectric Sensors and Transducers.
    Rathod VT
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the air coupling of bulk piezoelectric transducers with wedges of power-law profiles: a numerical study.
    Remillieux MC; Anderson BE; Le Bas PY; Ulrich TJ
    Ultrasonics; 2014 Jul; 54(5):1409-16. PubMed ID: 24636675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.