These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 28803481)

  • 1. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments.
    Li T; Chang X; Wu Z; Li J; Shao G; Deng X; Qiu J; Guo B; Zhang G; He Q; Li L; Wang J
    ACS Nano; 2017 Sep; 11(9):9268-9275. PubMed ID: 28803481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on obstacle avoidance optimization and path planning of autonomous vehicles based on attention mechanism combined with multimodal information decision-making thoughts of robots.
    Wu X; Wang G; Shen N
    Front Neurorobot; 2023; 17():1269447. PubMed ID: 37811356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart Sensing and Adaptive Reasoning for Enabling Industrial Robots with Interactive Human-Robot Capabilities in Dynamic Environments-A Case Study.
    Zabalza J; Fei Z; Wong C; Yan Y; Mineo C; Yang E; Rodden T; Mehnen J; Pham QC; Ren J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30889902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling Autonomous Navigation for Affordable Scooters.
    Liu K; Mulky R
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments.
    Doukhi O; Lee DJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A traffic priority language for collision-free navigation of autonomous mobile robots in dynamic environments.
    Bourbakis NG
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(4):573-87. PubMed ID: 18255898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Global Path Planner for Safe Navigation of Autonomous Vehicles in Uncertain Environments.
    Alharbi M; Karimi HA
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Hybrid Model for Obstacle Detection and Avoidance in Robot Operating System Framework (Rapidly Exploring Random Tree and Dynamic Windows Approach).
    Adiuku N; Avdelidis NP; Tang G; Plastropoulos A
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots.
    Sherwin T; Easte M; Chen AT; Wang KI; Dai W
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Exploration and Navigation with Optimal-RRT Planners for Ground Robots in Indoor Incidents.
    Pérez-Higueras N; Jardón A; Rodríguez Á; Balaguer C
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31906019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time path planning for autonomous vehicle off-road driving.
    Ramirez-Robles E; Starostenko O; Alarcon-Aquino V
    PeerJ Comput Sci; 2024; 10():e2209. PubMed ID: 39145222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Path Planner for Autonomous Exploration of Underground Mines by Aerial Vehicles.
    Rubio-Sierra C; Domínguez D; Gonzalo J; Escapa A
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive navigation in dynamic environment using a multisensor predictor.
    Song KT; Chang CC
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):870-80. PubMed ID: 18252364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuzzy Guided Autonomous Nursing Robot through Wireless Beacon Network.
    Narayanan KL; Krishnan RS; Son LH; Tung NT; Julie EG; Robinson YH; Kumar R; Gerogiannis VC
    Multimed Tools Appl; 2022; 81(3):3297-3325. PubMed ID: 34345198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment.
    Zhuang Y; Huang H; Sharma S; Xu D; Zhang Q
    ISA Trans; 2019 Nov; 94():174-186. PubMed ID: 31047643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-Temporal Joint Optimization-Based Trajectory Planning Method for Autonomous Vehicles in Complex Urban Environments.
    Guo J; Xie Z; Liu M; Dai Z; Jiang Y; Guo J; Xie D
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time map building and navigation for autonomous robots in unknown environments.
    Oriolo G; Ulivi G; Vendittelli M
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(3):316-33. PubMed ID: 18255950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sampling-based real-time motion planning under state uncertainty for autonomous micro-aerial vehicles in GPS-denied environments.
    Li D; Li Q; Cheng N; Song J
    Sensors (Basel); 2014 Nov; 14(11):21791-825. PubMed ID: 25412217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic-Field-Inspired Navigation for Robots in Complex and Unknown Environments.
    Ataka A; Lam HK; Althoefer K
    Front Robot AI; 2022; 9():834177. PubMed ID: 35252366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TAKEN: A Traffic Knowledge-Based Navigation System for Connected and Autonomous Vehicles.
    Kamath B N; Fernandes R; Rodrigues AP; Mahmud M; Vijaya P; Gadekallu TR; Kaiser MS
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.