These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28803514)

  • 1. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.
    Tahmasbi V; Ghoreishi M; Zolfaghari M
    Proc Inst Mech Eng H; 2017 Nov; 231(11):1012-1024. PubMed ID: 28803514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A feasibility investigation for modeling and optimization of temperature in bone drilling using fuzzy logic and Taguchi optimization methodology.
    Pandey RK; Panda SS
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1135-45. PubMed ID: 25500858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental analysis of drilling process in cortical bone.
    Wang W; Shi Y; Yang N; Yuan X
    Med Eng Phys; 2014 Feb; 36(2):261-6. PubMed ID: 24008016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-objective performance investigation of orthopaedic bone drilling using Taguchi membership function.
    Singh G; Jain V; Gupta D
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1133-1139. PubMed ID: 28990459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.
    Alam K
    Biomed Mater Eng; 2016 May; 27(1):39-48. PubMed ID: 27175466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotary ultrasonic bone drilling: Improved pullout strength and reduced damage.
    Gupta V; Pandey PM; Silberschmidt VV
    Med Eng Phys; 2017 Mar; 41():1-8. PubMed ID: 27913176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling and optimization of temperature in orthopaedic drilling: an in vitro study.
    Pandey RK; Panda SS
    Acta Bioeng Biomech; 2014; 16(1):107-16. PubMed ID: 24707883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method.
    Singh G; Jain V; Gupta D; Ghai A
    J Mech Behav Biomed Mater; 2016 Sep; 62():355-365. PubMed ID: 27254280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone.
    Gupta V; Pandey PM; Gupta RK; Mridha AR
    Proc Inst Mech Eng H; 2017 Mar; 231(3):189-196. PubMed ID: 28116985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machining of bone: Analysis of cutting force and surface roughness by turning process.
    Noordin MY; Jiawkok N; Ndaruhadi PY; Kurniawan D
    Proc Inst Mech Eng H; 2015 Nov; 229(11):761-8. PubMed ID: 26399875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials.
    Cseke A; Heinemann R
    Med Eng Phys; 2018 Jan; 51():24-30. PubMed ID: 29089237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal.
    Feldmann A; Gavaghan K; Stebinger M; Williamson T; Weber S; Zysset P
    Ann Biomed Eng; 2017 Sep; 45(9):2088-2097. PubMed ID: 28477057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling.
    Gupta V; Pandey PM
    Med Eng Phys; 2016 Nov; 38(11):1330-1338. PubMed ID: 27639655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature Prediction Model for Bone Drilling Based on Density Distribution and In Vivo Experiments for Minimally Invasive Robotic Cochlear Implantation.
    Feldmann A; Anso J; Bell B; Williamson T; Gavaghan K; Gerber N; Rohrbach H; Weber S; Zysset P
    Ann Biomed Eng; 2016 May; 44(5):1576-86. PubMed ID: 26358479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography.
    Alam K; Silberschmidt VV
    Technol Health Care; 2014 Jan; 22(2):243-52. PubMed ID: 24837054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.
    Shakouri E; Haghighi Hassanalideh H; Gholampour S
    Proc Inst Mech Eng H; 2018 Jan; 232(1):45-53. PubMed ID: 29153053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone.
    Shakouri E; Sadeghi MH; Maerefat M; Shajari S
    Proc Inst Mech Eng H; 2014 Apr; 228(4):330-41. PubMed ID: 24569922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vitro analysis of forces in conventional and ultrasonically assisted drilling of bone.
    Alam K; Hassan E; Imran SH; Khan M
    Biomed Mater Eng; 2016 May; 27(1):101-10. PubMed ID: 27175471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill.
    Augustin G; Davila S; Udilljak T; Staroveski T; Brezak D; Babic S
    Int Orthop; 2012 Jul; 36(7):1449-56. PubMed ID: 22290154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study.
    Karaca F; Aksakal B; Kom M
    Med Eng Phys; 2011 Dec; 33(10):1221-7. PubMed ID: 21703907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.