These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 28803516)
1. Well-defined protein immobilization on photo-responsive phosphorylcholine polymer surfaces. Tanaka M; Kawai S; Iwasaki Y J Biomater Sci Polym Ed; 2017 Dec; 28(17):2021-2033. PubMed ID: 28803516 [TBL] [Abstract][Full Text] [Related]
2. Photo-assisted generation of phospholipid polymer substrates for regiospecific protein conjugation and control of cell adhesion. Tanaka M; Iwasaki Y Acta Biomater; 2016 Aug; 40():54-61. PubMed ID: 26992370 [TBL] [Abstract][Full Text] [Related]
3. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance. Inoue Y; Onodera Y; Ishihara K Colloids Surf B Biointerfaces; 2016 May; 141():507-512. PubMed ID: 26896657 [TBL] [Abstract][Full Text] [Related]
4. Surface modification of poly(ether ether ketone) with methacryloyl-functionalized phospholipid polymers via self-initiation graft polymerization. Kawasaki Y; Iwasaki Y J Biomater Sci Polym Ed; 2014; 25(9):895-906. PubMed ID: 24766535 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of fibroblast cell adhesion on substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers. Ishihara K; Ishikawa E; Iwasaki Y; Nakabayashi N J Biomater Sci Polym Ed; 1999; 10(10):1047-61. PubMed ID: 10591131 [TBL] [Abstract][Full Text] [Related]
7. Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. Kang S; Lee M; Kang M; Noh M; Jeon J; Lee Y; Seo JH Acta Biomater; 2016 Aug; 40():70-77. PubMed ID: 26961806 [TBL] [Abstract][Full Text] [Related]
8. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Sibarani J; Takai M; Ishihara K Colloids Surf B Biointerfaces; 2007 Jan; 54(1):88-93. PubMed ID: 17112710 [TBL] [Abstract][Full Text] [Related]
9. Effects of phospholipid adsorption on nonthrombogenicity of polymer with phospholipid polar group. Ishihara K; Oshida H; Endo Y; Watanabe A; Ueda T; Nakabayashi N J Biomed Mater Res; 1993 Oct; 27(10):1309-14. PubMed ID: 8245045 [TBL] [Abstract][Full Text] [Related]
10. Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility. Yuan B; Chen Q; Ding WQ; Liu PS; Wu SS; Lin SC; Shen J; Gai Y ACS Appl Mater Interfaces; 2012 Aug; 4(8):4031-9. PubMed ID: 22856677 [TBL] [Abstract][Full Text] [Related]
11. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets. Feng W; Gao X; McClung G; Zhu S; Ishihara K; Brash JL Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202 [TBL] [Abstract][Full Text] [Related]
12. Protein adsorption on biomedical polymers with a phosphorylcholine moiety adsorbed with phospholipid. Ueda T; Watanabe A; Ishihara K; Nakabayashi N J Biomater Sci Polym Ed; 1991; 3(2):185-94. PubMed ID: 1768638 [TBL] [Abstract][Full Text] [Related]
13. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. Lin X; Fukazawa K; Ishihara K ACS Appl Mater Interfaces; 2015 Aug; 7(31):17489-98. PubMed ID: 26202385 [TBL] [Abstract][Full Text] [Related]
14. Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Xu Y; Takai M; Ishihara K Biomaterials; 2009 Oct; 30(28):4930-8. PubMed ID: 19560198 [TBL] [Abstract][Full Text] [Related]
15. Rapid development of hydrophilicity and protein adsorption resistance by polymer surfaces bearing phosphorylcholine and naphthalene groups. Futamura K; Matsuno R; Konno T; Takai M; Ishihara K Langmuir; 2008 Sep; 24(18):10340-4. PubMed ID: 18698868 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection. Park J; Kurosawa S; Watanabe J; Ishihara K Anal Chem; 2004 May; 76(9):2649-55. PubMed ID: 15117211 [TBL] [Abstract][Full Text] [Related]
17. The effect of the chemical structure of the phospholipid polymer on fibronectin adsorption and fibroblast adhesion on the gradient phospholipid surface. Iwasaki Y; Sawada S; Nakabayashi N; Khang G; Lee HB; Ishihara K Biomaterials; 1999 Nov; 20(22):2185-91. PubMed ID: 10555087 [TBL] [Abstract][Full Text] [Related]
18. Label-Free Specific Detection and Collection of C-Reactive Protein Using Zwitterionic Phosphorylcholine-Polymer-Protected Magnetic Nanoparticles. Iwasaki S; Kawasaki H; Iwasaki Y Langmuir; 2019 Feb; 35(5):1749-1755. PubMed ID: 29728047 [TBL] [Abstract][Full Text] [Related]
19. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Liu Y; Inoue Y; Sakata S; Kakinoki S; Yamaoka T; Ishihara K J Biomater Sci Polym Ed; 2014; 25(5):474-86. PubMed ID: 24417469 [TBL] [Abstract][Full Text] [Related]
20. Selective biorecognition and preservation of cell function on carbohydrate-immobilized phosphorylcholine polymers. Iwasaki Y; Takami U; Shinohara Y; Kurita K; Akiyoshi K Biomacromolecules; 2007 Sep; 8(9):2788-94. PubMed ID: 17663529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]