These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 28803516)
21. Reduced protein adsorption on novel phospholipid polymers. Ishihara K; Iwasaki Y J Biomater Appl; 1998 Oct; 13(2):111-27. PubMed ID: 9777463 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing. Fukazawa K; Ishihara K Biosens Bioelectron; 2009 Nov; 25(3):609-14. PubMed ID: 19443203 [TBL] [Abstract][Full Text] [Related]
23. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Goda T; Konno T; Takai M; Moro T; Ishihara K Biomaterials; 2006 Oct; 27(30):5151-60. PubMed ID: 16797692 [TBL] [Abstract][Full Text] [Related]
24. Surface functionalization of polytetrafluoroethylene substrate with hybrid processes comprising plasma treatment and chemical reactions. Cheng B; Inoue Y; Ishihara K Colloids Surf B Biointerfaces; 2019 Jan; 173():77-84. PubMed ID: 30267957 [TBL] [Abstract][Full Text] [Related]
25. Photo-immobilization of a phospholipid polymer for surface modification. Konno T; Hasuda H; Ishihara K; Ito Y Biomaterials; 2005 Apr; 26(12):1381-8. PubMed ID: 15482825 [TBL] [Abstract][Full Text] [Related]
26. Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine- and ethylene glycol-based surface modification for preventing protein and cell adhesion. Azuma T; Ohmori R; Teramura Y; Ishizaki T; Takai M Colloids Surf B Biointerfaces; 2017 Nov; 159():655-661. PubMed ID: 28866413 [TBL] [Abstract][Full Text] [Related]
27. Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Feng W; Zhu S; Ishihara K; Brash JL Langmuir; 2005 Jun; 21(13):5980-7. PubMed ID: 15952850 [TBL] [Abstract][Full Text] [Related]
28. Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Ishihara K; Fukumoto K; Iwasaki Y; Nakabayashi N Biomaterials; 1999 Sep; 20(17):1553-9. PubMed ID: 10482409 [TBL] [Abstract][Full Text] [Related]
29. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. Tateishi T; Kyomoto M; Kakinoki S; Yamaoka T; Ishihara K J Biomed Mater Res A; 2014 May; 102(5):1342-9. PubMed ID: 23720384 [TBL] [Abstract][Full Text] [Related]
30. Improved blood compatibility of segmented polyurethane by polymeric additives having phospholipid polar group. II. Dispersion state of the polymeric additive and protein adsorption on the surface. Ishihara K; Shibata N; Tanaka S; Iwasaki Y; Kurosaki T; Nakabayashi N J Biomed Mater Res; 1996 Nov; 32(3):401-8. PubMed ID: 8897145 [TBL] [Abstract][Full Text] [Related]
31. Competitive adsorption between phospholipid and plasma protein on a phospholipid polymer surface. Iwasaki Y; Nakabayashi N; Nakatani M; Mihara T; Kurita K; Ishihara K J Biomater Sci Polym Ed; 1999; 10(5):513-29. PubMed ID: 10357263 [TBL] [Abstract][Full Text] [Related]
32. Selective adhesion of platelets on a polyion complex composed of phospholipid polymers containing sulfonate groups and quarternary ammonium groups. Ishihara K; Inoue H; Kurita K; Nakabayashi N J Biomed Mater Res; 1994 Nov; 28(11):1347-55. PubMed ID: 7829565 [TBL] [Abstract][Full Text] [Related]
33. Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer. Liu Y; Inoue Y; Mahara A; Kakinoki S; Yamaoka T; Ishihara K J Biomater Sci Polym Ed; 2014; 25(14-15):1514-29. PubMed ID: 24894706 [TBL] [Abstract][Full Text] [Related]
34. Surface modification by 2-methacryloyloxyethyl phosphorylcholine coupled to a photolabile linker for cell micropatterning. Jang K; Sato K; Mawatari K; Konno T; Ishihara K; Kitamori T Biomaterials; 2009 Mar; 30(7):1413-20. PubMed ID: 19081624 [TBL] [Abstract][Full Text] [Related]
35. Initial Cell Adhesion onto a Phospholipid Polymer Brush Surface Modified with a Terminal Cell Adhesion Peptide. Inoue Y; Onodera Y; Ishihara K ACS Appl Mater Interfaces; 2018 May; 10(17):15250-15257. PubMed ID: 29652126 [TBL] [Abstract][Full Text] [Related]
36. Doubly biomimetic catecholic phosphorylcholine copolymer: a platform strategy for fabricating antifouling surfaces. Gong YK; Liu LP; Messersmith PB Macromol Biosci; 2012 Jul; 12(7):979-85. PubMed ID: 22610777 [TBL] [Abstract][Full Text] [Related]
37. Gradation of proteins and cells attached to the surface of bio-inert zwitterionic polymer brush. Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Kishioka T; Usui Y Colloids Surf B Biointerfaces; 2016 Aug; 144():180-187. PubMed ID: 27085477 [TBL] [Abstract][Full Text] [Related]
38. Direct photoreactive immobilization of water-soluble phospholipid polymers on substrates in an aqueous environment. Fukazawa K; Tsuji K; Inoue Y; Ishihara K Colloids Surf B Biointerfaces; 2021 Mar; 199():111507. PubMed ID: 33360080 [TBL] [Abstract][Full Text] [Related]
39. Protein-resistant materials via surface-initiated atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine. Jin Z; Feng W; Zhu S; Sheardown H; Brash JL J Biomater Sci Polym Ed; 2010; 21(10):1331-44. PubMed ID: 20534188 [TBL] [Abstract][Full Text] [Related]