BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 28803940)

  • 1. Real-time motion analytics during brain MRI improve data quality and reduce costs.
    Dosenbach NUF; Koller JM; Earl EA; Miranda-Dominguez O; Klein RL; Van AN; Snyder AZ; Nagel BJ; Nigg JT; Nguyen AL; Wesevich V; Greene DJ; Fair DA
    Neuroimage; 2017 Nov; 161():80-93. PubMed ID: 28803940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of respiratory artifacts in MRI head motion estimates.
    Fair DA; Miranda-Dominguez O; Snyder AZ; Perrone A; Earl EA; Van AN; Koller JM; Feczko E; Tisdall MD; van der Kouwe A; Klein RL; Mirro AE; Hampton JM; Adeyemo B; Laumann TO; Gratton C; Greene DJ; Schlaggar BL; Hagler DJ; Watts R; Garavan H; Barch DM; Nigg JT; Petersen SE; Dale AM; Feldstein-Ewing SW; Nagel BJ; Dosenbach NUF
    Neuroimage; 2020 Mar; 208():116400. PubMed ID: 31778819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time motion monitoring improves functional MRI data quality in infants.
    Badke D'Andrea C; Kenley JK; Montez DF; Mirro AE; Miller RL; Earl EA; Koller JM; Sung S; Yacoub E; Elison JT; Fair DA; Dosenbach NUF; Rogers CE; Smyser CD; Greene DJ
    Dev Cogn Neurosci; 2022 Jun; 55():101116. PubMed ID: 35636344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data.
    Lanka P; Deshpande G
    Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLIMM: Slice localization integrated MRI monitoring.
    Sui Y; Afacan O; Gholipour A; Warfield SK
    Neuroimage; 2020 Dec; 223():117280. PubMed ID: 32853815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective motion correction in functional MRI using simultaneous multislice imaging and multislice-to-volume image registration.
    Hoinkiss DC; Erhard P; Breutigam NJ; von Samson-Himmelstjerna F; Günther M; Porter DA
    Neuroimage; 2019 Oct; 200():159-173. PubMed ID: 31226496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data.
    Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM
    Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Less head motion during MRI under task than resting-state conditions.
    Huijbers W; Van Dijk KRA; Boenniger MM; Stirnberg R; Breteler MMB
    Neuroimage; 2017 Feb; 147():111-120. PubMed ID: 27919751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multidimensional artefact-reduction approach to increase robustness of first-level fMRI analyses: Censoring vs. interpolating.
    Wilke M; Baldeweg T
    J Neurosci Methods; 2019 Apr; 318():56-68. PubMed ID: 30779930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
    Parkes L; Fulcher B; Yücel M; Fornito A
    Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion correction in MRI of the brain.
    Godenschweger F; Kägebein U; Stucht D; Yarach U; Sciarra A; Yakupov R; Lüsebrink F; Schulze P; Speck O
    Phys Med Biol; 2016 Mar; 61(5):R32-56. PubMed ID: 26864183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective motion correction in functional MRI.
    Zaitsev M; Akin B; LeVan P; Knowles BR
    Neuroimage; 2017 Jul; 154():33-42. PubMed ID: 27845256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global motion detection and censoring in high-density diffuse optical tomography.
    Sherafati A; Snyder AZ; Eggebrecht AT; Bergonzi KM; Burns-Yocum TM; Lugar HM; Ferradal SL; Robichaux-Viehoever A; Smyser CD; Palanca BJ; Hershey T; Culver JP
    Hum Brain Mapp; 2020 Oct; 41(14):4093-4112. PubMed ID: 32648643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines.
    Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J
    Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions.
    Dipasquale O; Sethi A; Laganà MM; Baglio F; Baselli G; Kundu P; Harrison NA; Cercignani M
    PLoS One; 2017; 12(3):e0173289. PubMed ID: 28323821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion.
    Savalia NK; Agres PF; Chan MY; Feczko EJ; Kennedy KM; Wig GS
    Hum Brain Mapp; 2017 Jan; 38(1):472-492. PubMed ID: 27634551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and environmental influences on MRI scan quantity and quality.
    Achterberg M; van der Meulen M
    Dev Cogn Neurosci; 2019 Aug; 38():100667. PubMed ID: 31170550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
    Lindquist MA; Geuter S; Wager TD; Caffo BS
    Hum Brain Mapp; 2019 Jun; 40(8):2358-2376. PubMed ID: 30666750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.
    Patel AX; Kundu P; Rubinov M; Jones PS; Vértes PE; Ersche KD; Suckling J; Bullmore ET
    Neuroimage; 2014 Jul; 95(100):287-304. PubMed ID: 24657353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved model of motion-related signal changes in fMRI.
    Patriat R; Reynolds RC; Birn RM
    Neuroimage; 2017 Jan; 144(Pt A):74-82. PubMed ID: 27570108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.