These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 28804021)
1. Intervention to maximise the probability of epidemic fade-out. Ballard PG; Bean NG; Ross JV Math Biosci; 2017 Nov; 293():1-10. PubMed ID: 28804021 [TBL] [Abstract][Full Text] [Related]
2. The probability of epidemic fade-out is non-monotonic in transmission rate for the Markovian SIR model with demography. Ballard PG; Bean NG; Ross JV J Theor Biol; 2016 Mar; 393():170-8. PubMed ID: 26796227 [TBL] [Abstract][Full Text] [Related]
3. A stochastic SIR network epidemic model with preventive dropping of edges. Ball F; Britton T; Leung KY; Sirl D J Math Biol; 2019 May; 78(6):1875-1951. PubMed ID: 30868213 [TBL] [Abstract][Full Text] [Related]
4. Random migration processes between two stochastic epidemic centers. Sazonov I; Kelbert M; Gravenor MB Math Biosci; 2016 Apr; 274():45-57. PubMed ID: 26877075 [TBL] [Abstract][Full Text] [Related]
5. Hybrid Markov chain models of S-I-R disease dynamics. Rebuli NP; Bean NG; Ross JV J Math Biol; 2017 Sep; 75(3):521-541. PubMed ID: 28013336 [TBL] [Abstract][Full Text] [Related]
6. Some properties of a simple stochastic epidemic model of SIR type. Tuckwell HC; Williams RJ Math Biosci; 2007 Jul; 208(1):76-97. PubMed ID: 17173939 [TBL] [Abstract][Full Text] [Related]
7. Optimal intervention for an epidemic model under parameter uncertainty. Clancy D; Green N Math Biosci; 2007 Feb; 205(2):297-314. PubMed ID: 17070866 [TBL] [Abstract][Full Text] [Related]
8. Probability of a disease outbreak in stochastic multipatch epidemic models. Lahodny GE; Allen LJ Bull Math Biol; 2013 Jul; 75(7):1157-80. PubMed ID: 23666483 [TBL] [Abstract][Full Text] [Related]
9. Estimation of the probability of epidemic fade-out from multiple outbreak data. Alahakoon P; McCaw JM; Taylor PG Epidemics; 2022 Mar; 38():100539. PubMed ID: 35093850 [TBL] [Abstract][Full Text] [Related]
10. Exact and approximate moment closures for non-Markovian network epidemics. Pellis L; House T; Keeling MJ J Theor Biol; 2015 Oct; 382():160-77. PubMed ID: 25975999 [TBL] [Abstract][Full Text] [Related]
11. Mean-field models for non-Markovian epidemics on networks. Sherborne N; Miller JC; Blyuss KB; Kiss IZ J Math Biol; 2018 Feb; 76(3):755-778. PubMed ID: 28685365 [TBL] [Abstract][Full Text] [Related]
12. Edge-based epidemic spreading in degree-correlated complex networks. Wang Y; Ma J; Cao J; Li L J Theor Biol; 2018 Oct; 454():164-181. PubMed ID: 29885412 [TBL] [Abstract][Full Text] [Related]
13. Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing. Kenah E; Robins JM J Theor Biol; 2007 Dec; 249(4):706-22. PubMed ID: 17950362 [TBL] [Abstract][Full Text] [Related]
14. The distribution of the time taken for an epidemic to spread between two communities. Yan AWC; Black AJ; McCaw JM; Rebuli N; Ross JV; Swan AJ; Hickson RI Math Biosci; 2018 Sep; 303():139-147. PubMed ID: 30089576 [TBL] [Abstract][Full Text] [Related]
15. Precise Estimates of Persistence Time for SIS Infections in Heterogeneous Populations. Clancy D Bull Math Biol; 2018 Nov; 80(11):2871-2896. PubMed ID: 30206808 [TBL] [Abstract][Full Text] [Related]
16. Extinction times in the subcritical stochastic SIS logistic epidemic. Brightwell G; House T; Luczak M J Math Biol; 2018 Aug; 77(2):455-493. PubMed ID: 29387919 [TBL] [Abstract][Full Text] [Related]
17. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase. Britton T; Juher D; SaldaƱa J Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576 [TBL] [Abstract][Full Text] [Related]
18. Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak. van Herwaarden OA J Math Biol; 1997 Aug; 35(7):793-813. PubMed ID: 9269737 [TBL] [Abstract][Full Text] [Related]
19. Complex Dynamical Behaviour in an Epidemic Model with Control. Vyska M; Gilligan C Bull Math Biol; 2016 Nov; 78(11):2212-2227. PubMed ID: 27757705 [TBL] [Abstract][Full Text] [Related]
20. Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies. Krause AL; Kurowski L; Yawar K; Van Gorder RA J Theor Biol; 2018 Jul; 449():35-52. PubMed ID: 29673907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]