BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

761 related articles for article (PubMed ID: 28804139)

  • 1. The interplay of epigenetic marks during stem cell differentiation and development.
    Atlasi Y; Stunnenberg HG
    Nat Rev Genet; 2017 Nov; 18(11):643-658. PubMed ID: 28804139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic reprogramming: enforcer or enabler of developmental fate?
    Combes AN; Whitelaw E
    Dev Growth Differ; 2010 Aug; 52(6):483-91. PubMed ID: 20608951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic regulation in cell reprogramming revealed by genome-wide analysis.
    Hong CP; Park J; Roh TY
    Epigenomics; 2011 Feb; 3(1):73-81. PubMed ID: 22126154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic regulation of epidermal differentiation.
    Perdigoto CN; Valdes VJ; Bardot ES; Ezhkova E
    Cold Spring Harb Perspect Med; 2014 Feb; 4(2):. PubMed ID: 24492849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin organization and differentiation in embryonic stem cell models.
    Giadrossi S; Dvorkina M; Fisher AG
    Curr Opin Genet Dev; 2007 Apr; 17(2):132-8. PubMed ID: 17336511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tackling the epigenome in the pluripotent stem cells.
    Zhao X; Ruan Y; Wei CL
    J Genet Genomics; 2008 Jul; 35(7):403-12. PubMed ID: 18640620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of disease: epigenesis.
    Waggoner D
    Semin Pediatr Neurol; 2007 Mar; 14(1):7-14. PubMed ID: 17331879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic regulation of self-renewal and fate determination in neural stem cells.
    Mohamed Ariff I; Mitra A; Basu A
    J Neurosci Res; 2012 Mar; 90(3):529-39. PubMed ID: 22183977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective.
    Liu S; Zhang L; Quan H; Tian H; Meng L; Yang L; Feng H; Gao YQ
    Nucleic Acids Res; 2018 Oct; 46(18):9367-9383. PubMed ID: 30053116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment.
    Beagan JA; Duong MT; Titus KR; Zhou L; Cao Z; Ma J; Lachanski CV; Gillis DR; Phillips-Cremins JE
    Genome Res; 2017 Jul; 27(7):1139-1152. PubMed ID: 28536180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Traffic light rules': Chromatin states direct miRNA-mediated network motifs running by integrating epigenome and regulatome.
    Zhao H; Zhang G; Pang L; Lan Y; Wang L; Yu F; Hu J; Li F; Zhao T; Xiao Y; Li X
    Biochim Biophys Acta; 2016 Jul; 1860(7):1475-88. PubMed ID: 27091612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cycle regulation of silent chromatin formation.
    Young TJ; Kirchmaier AL
    Biochim Biophys Acta; 2013; 1819(3-4):303-312. PubMed ID: 24459732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of chromatin assembly factor 1 in the epigenetic control of chromatin plasticity.
    Huang H; Jiao R
    Sci China Life Sci; 2012 Jan; 55(1):15-9. PubMed ID: 22314486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The epigenomics of embryonic stem cell differentiation.
    Kraushaar DC; Zhao K
    Int J Biol Sci; 2013; 9(10):1134-44. PubMed ID: 24339734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the dynamic epigenome: from histone modifications towards self-organizing chromatin.
    Rohlf T; Steiner L; Przybilla J; Prohaska S; Binder H; Galle J
    Epigenomics; 2012 Apr; 4(2):205-19. PubMed ID: 22449191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The epigenetic landscape of mammary gland development and functional differentiation.
    Rijnkels M; Kabotyanski E; Montazer-Torbati MB; Hue Beauvais C; Vassetzky Y; Rosen JM; Devinoy E
    J Mammary Gland Biol Neoplasia; 2010 Mar; 15(1):85-100. PubMed ID: 20157770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs.
    Sadakierska-Chudy A; Filip M
    Neurotox Res; 2015 Feb; 27(2):172-97. PubMed ID: 25516120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells.
    Meshorer E; Yellajoshula D; George E; Scambler PJ; Brown DT; Misteli T
    Dev Cell; 2006 Jan; 10(1):105-16. PubMed ID: 16399082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes of the epigenetic landscape during cellular differentiation.
    Dambacher S; de Almeida GP; Schotta G
    Epigenomics; 2013 Dec; 5(6):701-13. PubMed ID: 24283883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic regulation for acquiring glial identity by neural stem cells during cortical development.
    Nakagawa T; Wada Y; Katada S; Kishi Y
    Glia; 2020 Aug; 68(8):1554-1567. PubMed ID: 32163194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.