These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28804141)

  • 1. A capacitive ultrasonic transducer based on parametric resonance.
    Surappa S; Satir S; Levent Degertekin F
    Appl Phys Lett; 2017 Jul; 111(4):043503. PubMed ID: 28804141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and Design of Capacitive Parametric Ultrasonic Transducers for Efficient Ultrasonic Power Transfer Based on a 1-D Lumped Model.
    Surappa S; Tao M; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2103-2112. PubMed ID: 30130183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband electrostatic acoustic transducer for ultrasonic measurements in liquids.
    Cantrell JH; Heyman JS; Yost WT; Torbett MA; Breazeale MA
    Rev Sci Instrum; 1979 Jan; 50(1):31. PubMed ID: 18699333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Air-Coupled Multiple Moving Membrane Micromachined Ultrasonic Transducer With Inverse Biasing Functionality.
    Emadi A; Buchanan DA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1140-7. PubMed ID: 27254861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials.
    Lani SW; Wasequr Rashid M; Hasler J; Sabra KG; Levent Degertekin F
    Appl Phys Lett; 2014 Feb; 104(5):051914. PubMed ID: 24753623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing signal amplitude in electrical impedance tomography of neural activity using a parallel resistor inductor capacitor (RLC) circuit.
    Hope J; Aqrawe Z; Lim M; Vanholsbeeck F; McDaid A
    J Neural Eng; 2019 Nov; 16(6):066041. PubMed ID: 31536974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biasing of Capacitive Micromachined Ultrasonic Transducers.
    Caliano G; Matrone G; Savoia AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):402-413. PubMed ID: 27810808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-collapse operation of capacitive micromachined ultrasonic transducers.
    Olcum S; Yamaner FY; Bozkurt A; Atalar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2475-83. PubMed ID: 22083780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Study and Optimisation of a Novel Single-Element Dual-Frequency Ultrasound Transducer.
    Sun C; Jiang S; Liu Y
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of one-dimensional capacitive micromachined ultrasonic immersion transducer arrays.
    Jin X; Oralkan O; Degertekin FL; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):750-60. PubMed ID: 11381699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Analysis Method for Capacitive Micromachined Ultrasound Transducer (CMUT) Energy Conversion during Large Signal Operation.
    Pirouz A; Degertekin FL
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacitive micromachined ultrasonic Lamb wave transducers using rectangular membranes.
    Badi MH; Yaralioglu GG; Ergun AS; Hansen ST; Wong EJ; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Sep; 50(9):1191-203. PubMed ID: 14561035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional scholte wave generation and detection using interdigital capacitive micromachined ultrasonic transducers.
    McLean J; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):756-64. PubMed ID: 15244289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing transmitting CMUT cells for airborne applications.
    Unlügedik A; Taşdelen A; Atalar A; Köymen H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1899-910. PubMed ID: 25389168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental characterization of collapse-mode CMUT operation.
    Oralkan O; Bayram B; Yaralioglu GG; Ergun AS; Kupnik M; Yeh DT; Wygant IO; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Aug; 53(8):1513-23. PubMed ID: 16921904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-power CMUTs: design and experimental verification.
    Yamaner FY; Olçum S; Oğuz HK; Bozkurt A; Köymen H; Atalar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1276-84. PubMed ID: 22718878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacitive micromachined ultrasonic transducers based on annular cell geometry for air-coupled applications.
    Na S; Chen AIH; Wong LLP; Li Z; Macecek M; Yeow JTW
    Ultrasonics; 2016 Sep; 71():152-160. PubMed ID: 27352025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PSpice modeling of capacitive microfabricated ultrasonic transducers.
    Caliano G; Caronti A; Baruzzi M; Rubini A; Iula A; Carotenuto R; Pappalardo M
    Ultrasonics; 2002 May; 40(1-8):449-55. PubMed ID: 12159982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of micromachined ultrasonic radiators on the efficiency of transducers in air.
    Je Y; Lee H; Moon W
    Ultrasonics; 2013 Aug; 53(6):1124-34. PubMed ID: 23541961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.