These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28804734)

  • 1. 3D Printing of Personalized Artificial Bone Scaffolds.
    Jariwala SH; Lewis GS; Bushman ZJ; Adair JH; Donahue HJ
    3D Print Addit Manuf; 2015 Jun; 2(2):56-64. PubMed ID: 28804734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration.
    Heller M; Bauer HK; Goetze E; Gielisch M; Ozbolat IT; Moncal KK; Rizk E; Seitz H; Gelinsky M; Schröder HC; Wang XH; Müller WE; Al-Nawas B
    Int J Comput Dent; 2016; 19(4):301-321. PubMed ID: 28008428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing for Bone Regeneration.
    Bandyopadhyay A; Mitra I; Bose S
    Curr Osteoporos Rep; 2020 Oct; 18(5):505-514. PubMed ID: 32748324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing of Textiles: Potential Roadmap to Printing with Fibers.
    Chatterjee K; Ghosh TK
    Adv Mater; 2020 Jan; 32(4):e1902086. PubMed ID: 31788860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Fabrication of Three-Dimensional Printed Scaffolds for Cancer Precision Medicine.
    Shafiee A
    Tissue Eng Part A; 2020 Mar; 26(5-6):305-317. PubMed ID: 31992154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds.
    Chen Y; Li W; Zhang C; Wu Z; Liu J
    Adv Healthc Mater; 2020 Dec; 9(23):e2000724. PubMed ID: 32743960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing.
    Butscher A; Bohner M; Hofmann S; Gauckler L; Müller R
    Acta Biomater; 2011 Mar; 7(3):907-20. PubMed ID: 20920616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioactive composite scaffolds for bone tissue engineering.
    Turnbull G; Clarke J; Picard F; Riches P; Jia L; Han F; Li B; Shu W
    Bioact Mater; 2018 Sep; 3(3):278-314. PubMed ID: 29744467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.
    Chang CH; Lin CY; Liu FH; Chen MH; Lin CP; Ho HN; Liao YS
    PLoS One; 2015; 10(11):e0143713. PubMed ID: 26618362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.
    Zhou Z; Buchanan F; Mitchell C; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends.
    Pahlevanzadeh F; Emadi R; Valiani A; Kharaziha M; Poursamar SA; Bakhsheshi-Rad HR; Ismail AF; RamaKrishna S; Berto F
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32545256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.
    Wei Q; Wang Y; Li X; Yang M; Chai W; Wang K; zhang Y
    J Mech Behav Biomed Mater; 2016 Apr; 57():190-200. PubMed ID: 26724560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems.
    Vithani K; Goyanes A; Jannin V; Basit AW; Gaisford S; Boyd BJ
    Pharm Res; 2018 Nov; 36(1):4. PubMed ID: 30406349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional Printing of Multilayered Tissue Engineering Scaffolds.
    Bittner SM; Guo JL; Melchiorri A; Mikos AG
    Mater Today (Kidlington); 2018 Oct; 21(8):861-874. PubMed ID: 30450010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Polymers in 3D Printing Technology for Drug Delivery - An Overview.
    Jain A; Bansal KK; Tiwari A; Rosling A; Rosenholm JM
    Curr Pharm Des; 2018; 24(42):4979-4990. PubMed ID: 30585543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects.
    Hixon KR; Melvin AM; Lin AY; Hall AF; Sell SA
    J Biomater Appl; 2017 Nov; 32(5):598-611. PubMed ID: 28980856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption.
    Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():975-986. PubMed ID: 30274136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.