These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 28804996)
1. In vitro evaluation of 3D bioprinted tri-polymer network scaffolds for bone tissue regeneration. Bendtsen ST; Wei M J Biomed Mater Res A; 2017 Dec; 105(12):3262-3272. PubMed ID: 28804996 [TBL] [Abstract][Full Text] [Related]
2. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
3. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179 [TBL] [Abstract][Full Text] [Related]
4. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. Kundu J; Shim JH; Jang J; Kim SW; Cho DW J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a polyvinyl alcohol-alginate based hydrogel for precise 3D bioprinting. Yu F; Han X; Zhang K; Dai B; Shen S; Gao X; Teng H; Wang X; Li L; Ju H; Wang W; Zhang J; Jiang Q J Biomed Mater Res A; 2018 Nov; 106(11):2944-2954. PubMed ID: 30329209 [TBL] [Abstract][Full Text] [Related]
7. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
8. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Lee GS; Park JH; Shin US; Kim HW Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944 [TBL] [Abstract][Full Text] [Related]
9. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134 [TBL] [Abstract][Full Text] [Related]
10. Bioprinting endothelial cells with alginate for 3D tissue constructs. Khalil S; Sun W J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253 [TBL] [Abstract][Full Text] [Related]
11. Hydroxyapatite-doped alginate beads as scaffolds for the osteoblastic differentiation of mesenchymal stem cells. Wang MO; Bracaglia L; Thompson JA; Fisher JP J Biomed Mater Res A; 2016 Sep; 104(9):2325-33. PubMed ID: 27129735 [TBL] [Abstract][Full Text] [Related]
12. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. Quinlan E; López-Noriega A; Thompson EM; Hibbitts A; Cryan SA; O'Brien FJ J Tissue Eng Regen Med; 2017 Apr; 11(4):1097-1109. PubMed ID: 25783558 [TBL] [Abstract][Full Text] [Related]
13. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175 [TBL] [Abstract][Full Text] [Related]
14. In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits. Zhang Y; Yu Y; Akkouch A; Dababneh A; Dolati F; Ozbolat IT Biomater Sci; 2015 Jan; 3(1):134-43. PubMed ID: 25574378 [TBL] [Abstract][Full Text] [Related]
15. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. Quinlan E; López-Noriega A; Thompson E; Kelly HM; Cryan SA; O'Brien FJ J Control Release; 2015 Jan; 198():71-9. PubMed ID: 25481441 [TBL] [Abstract][Full Text] [Related]
16. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Yang X; Lu Z; Wu H; Li W; Zheng L; Zhao J Mater Sci Eng C Mater Biol Appl; 2018 Feb; 83():195-201. PubMed ID: 29208279 [TBL] [Abstract][Full Text] [Related]
17. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration. Yeo M; Lee H; Kim GH Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918 [TBL] [Abstract][Full Text] [Related]
18. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells. Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297 [TBL] [Abstract][Full Text] [Related]
19. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness. Shi P; Laude A; Yeong WY J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198 [TBL] [Abstract][Full Text] [Related]
20. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. Luo Y; Lode A; Wu C; Chang J; Gelinsky M ACS Appl Mater Interfaces; 2015 Apr; 7(12):6541-9. PubMed ID: 25761464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]