These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 28805166)
81. An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds. Laznik Z; Trdan S Exp Parasitol; 2013 Jul; 134(3):349-55. PubMed ID: 23562713 [TBL] [Abstract][Full Text] [Related]
82. Improving the biocontrol potential of Steinernema feltiae against Delia radicum through dosage, application technique and timing. Beck B; Spanoghe P; Moens M; Brusselman E; Temmerman F; Pollet S; Nuyttens D Pest Manag Sci; 2014 May; 70(5):841-51. PubMed ID: 23943630 [TBL] [Abstract][Full Text] [Related]
83. Efficacy and residual activity of commercially available entomopathogenic nematode strains for Mediterranean fruit fly control and their ability to infect infested fruits. Kapranas A; Chronopoulou A; Lytra IC; Peters A; Milonas PG; Papachristos DP Pest Manag Sci; 2021 Sep; 77(9):3964-3969. PubMed ID: 33864350 [TBL] [Abstract][Full Text] [Related]
85. Greenhouse and field evaluations of entomopathogenic nematodes (Nematoda:Heterorhabditidae and Steinernematidae) for control of cabbage maggot (Diptera:Anthomyiidae) on cabbage. Schroeder PC; Ferguson CS; Shelton AM; Wilsey WT; Hoffmann MP; Petzoldt C J Econ Entomol; 1996 Oct; 89(5):1109-15. PubMed ID: 8913112 [TBL] [Abstract][Full Text] [Related]
86. Host resistance reverses the outcome of competition between microparasites. Gruner DS; Kolekar A; McLaughlin JP; Strong DR Ecology; 2009 Jul; 90(7):1721-8. PubMed ID: 19694121 [TBL] [Abstract][Full Text] [Related]
87. Target Host Finding by Steinernema feltiae and Heterorhabditis bacteriophora in the Presence of a Non-Target Insect Host. Powell JR; Webster JM J Nematol; 2004 Sep; 36(3):285-9. PubMed ID: 19262818 [TBL] [Abstract][Full Text] [Related]
88. Heterorhabditis atacamensis n. sp. (Nematoda: Heterorhabditidae), a new entomopathogenic nematode from the Atacama Desert, Chile. Edgington S; Buddie AG; Moore D; France A; Merino L; Hunt DJ J Helminthol; 2011 Dec; 85(4):381-94. PubMed ID: 21087534 [TBL] [Abstract][Full Text] [Related]
89. Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: traits contributing to nematode fitness and biocontrol efficacy. Griffin CT J Nematol; 2012 Jun; 44(2):177-84. PubMed ID: 23482343 [TBL] [Abstract][Full Text] [Related]
90. Laboratory virulence and orchard efficacy of entomopathogenic nematodes against the lesser peachtree borer (Lepidoptera: Sesiidae). Cottrell TE; Shapiro-Ilan DI; Horton DL; Mizell RF J Econ Entomol; 2011 Feb; 104(1):47-53. PubMed ID: 21404838 [TBL] [Abstract][Full Text] [Related]
91. Soil moisture effects on the activity of three entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) isolated from Meghalaya, India. Yadav AK; Lalramliana J Parasit Dis; 2012 Apr; 36(1):94-8. PubMed ID: 23543771 [TBL] [Abstract][Full Text] [Related]
93. Interactions of two idiobiont parasitoids (Hymenoptera: Ichneumonidae) of codling moth (Lepidoptera: Tortricidae) with the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). Lacey LA; Unruh TR; Headrick HL J Invertebr Pathol; 2003 Jul; 83(3):230-9. PubMed ID: 12877830 [TBL] [Abstract][Full Text] [Related]
94. Control of overwintering filbertworm (Lepidoptera: Tortricidae) larvae with Steinernema carpocapsae. Chambers U; Bruck DJ; Olsen J; Walton VM J Econ Entomol; 2010 Apr; 103(2):416-22. PubMed ID: 20429457 [TBL] [Abstract][Full Text] [Related]
95. Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). Sicard M; Hinsinger J; Le Brun N; Pages S; Boemare N; Moulia C BMC Evol Biol; 2006 Sep; 6():68. PubMed ID: 16953880 [TBL] [Abstract][Full Text] [Related]
96. Involvement of a novel Pseudomonas protegens strain associated with entomopathogenic nematode infective juveniles in insect pathogenesis. Ruiu L; Marche MG; Mura ME; Tarasco E Pest Manag Sci; 2022 Dec; 78(12):5437-5443. PubMed ID: 36057860 [TBL] [Abstract][Full Text] [Related]
97. Interaction of the koinobiont parasitoid Microplitis rufiventris of the cotton leafworm, Spodoptera littoralis, with two entomopathogenic rhabditids, Heterorhabditis bacteriophora and Steinernema carpocapsae. Atwa AA; Hegazi EM; Khafagi WE; El-Aziz GM J Insect Sci; 2013; 13():84. PubMed ID: 24219656 [TBL] [Abstract][Full Text] [Related]
98. Effect of soil type on infectivity and persistence of the entomopathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. Koppenhöfer AM; Fuzy EM J Invertebr Pathol; 2006 May; 92(1):11-22. PubMed ID: 16563427 [TBL] [Abstract][Full Text] [Related]
99. Infection of the Entomopathogenic Nematode, Steinernema carpocapsae, as Affected by the Presence of Steinernema glaseri. Wang XD; Ishibashi N J Nematol; 1999 Jun; 31(2):207-11. PubMed ID: 19270891 [TBL] [Abstract][Full Text] [Related]
100. Impact of Abiotic and Biotic Environmental Conditions on the Development and Infectivity of Entomopathogenic Nematodes in Agricultural Soils. Matuska-Łyżwa J; Duda S; Nowak D; Kaca W Insects; 2024 Jun; 15(6):. PubMed ID: 38921136 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]