These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 28805245)

  • 1. Tropical rainforest carbon sink declines during El Niño as a result of reduced photosynthesis and increased respiration rates.
    Cavaleri MA; Coble AP; Ryan MG; Bauerle WL; Loescher HW; Oberbauer SF
    New Phytol; 2017 Oct; 216(1):136-149. PubMed ID: 28805245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. El Niño-Southern Oscillation forcing on carbon and water cycling in a Bornean tropical rainforest.
    Takamura N; Hata Y; Matsumoto K; Kume T; Ueyama M; Kumagai T
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2301596120. PubMed ID: 37812704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased tropical vegetation respiration is dually induced by El Niño and upper atmospheric warm anomalies.
    Wang Z; Huang M; Gong H; Li X; Zhang H; Zhou X
    Sci Total Environ; 2022 Apr; 818():151719. PubMed ID: 34822906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foliar and ecosystem respiration in an old-growth tropical rain forest.
    Cavaleri MA; Oberbauer SF; Ryan MG
    Plant Cell Environ; 2008 Apr; 31(4):473-83. PubMed ID: 18182017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China.
    Fei X; Song Q; Zhang Y; Liu Y; Sha L; Yu G; Zhang L; Duan C; Deng Y; Wu C; Lu Z; Luo K; Chen A; Xu K; Liu W; Huang H; Jin Y; Zhou R; Li J; Lin Y; Zhou L; Fu Y; Bai X; Tang X; Gao J; Zhou W; Grace J
    Sci Total Environ; 2018 Mar; 616-617():824-840. PubMed ID: 29100686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison.
    Restrepo-Coupe N; Levine NM; Christoffersen BO; Albert LP; Wu J; Costa MH; Galbraith D; Imbuzeiro H; Martins G; da Araujo AC; Malhi YS; Zeng X; Moorcroft P; Saleska SR
    Glob Chang Biol; 2017 Jan; 23(1):191-208. PubMed ID: 27436068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistance of African tropical forests to an extreme climate anomaly.
    Bennett AC; Dargie GC; Cuni-Sanchez A; Tshibamba Mukendi J; Hubau W; Mukinzi JM; Phillips OL; Malhi Y; Sullivan MJP; Cooper DLM; Adu-Bredu S; Affum-Baffoe K; Amani CA; Banin LF; Beeckman H; Begne SK; Bocko YE; Boeckx P; Bogaert J; Brncic T; Chezeaux E; Clark CJ; Daniels AK; de Haulleville T; Djuikouo Kamdem MN; Doucet JL; Evouna Ondo F; Ewango CEN; Feldpausch TR; Foli EG; Gonmadje C; Hall JS; Hardy OJ; Harris DJ; Ifo SA; Jeffery KJ; Kearsley E; Leal M; Levesley A; Makana JR; Mbayu Lukasu F; Medjibe VP; Mihindu V; Moore S; Nssi Begone N; Pickavance GC; Poulsen JR; Reitsma J; Sonké B; Sunderland TCH; Taedoumg H; Talbot J; Tuagben DS; Umunay PM; Verbeeck H; Vleminckx J; White LJT; Woell H; Woods JT; Zemagho L; Lewis SL
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34001597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches.
    Bastos A; Friedlingstein P; Sitch S; Chen C; Mialon A; Wigneron JP; Arora VK; Briggs PR; Canadell JG; Ciais P; Chevallier F; Cheng L; Delire C; Haverd V; Jain AK; Joos F; Kato E; Lienert S; Lombardozzi D; Melton JR; Myneni R; Nabel JEMS; Pongratz J; Poulter B; Rödenbeck C; Séférian R; Tian H; van Eck C; Viovy N; Vuichard N; Walker AP; Wiltshire A; Yang J; Zaehle S; Zeng N; Zhu D
    Philos Trans R Soc Lond B Biol Sci; 2018 Oct; 373(1760):. PubMed ID: 30297465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of the 2015/2016 El Niño on global photosynthesis using satellite remote sensing.
    Luo X; Keenan TF; Fisher JB; Jiménez-Muñoz JC; Chen JM; Jiang C; Ju W; Perakalapudi NV; Ryu Y; Tadić JM
    Philos Trans R Soc Lond B Biol Sci; 2018 Oct; 373(1760):. PubMed ID: 30297474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?
    Drake JE; Tjoelker MG; Aspinwall MJ; Reich PB; Barton CV; Medlyn BE; Duursma RA
    New Phytol; 2016 Aug; 211(3):850-63. PubMed ID: 27122489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis.
    Duursma RA; Kolari P; Perämäki M; Pulkkinen M; Mäkelä A; Nikinmaa E; Hari P; Aurela M; Berbigier P; Bernhofer CH; Grünwald T; Loustau D; Mölder M; Verbeeck H; Vesala T
    Tree Physiol; 2009 May; 29(5):621-39. PubMed ID: 19324698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink.
    Fei X; Jin Y; Zhang Y; Sha L; Liu Y; Song Q; Zhou W; Liang N; Yu G; Zhang L; Zhou R; Li J; Zhang S; Li P
    Sci Rep; 2017 Feb; 7():41025. PubMed ID: 28145459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of eddy covariance and chamber-based methods for measuring CO2 flux in a temperate mixed forest.
    Wang M; Guan DX; Han SJ; Wu JL
    Tree Physiol; 2010 Jan; 30(1):149-63. PubMed ID: 19955193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total and component carbon fluxes of a Scots pine ecosystem from chamber measurements and eddy covariance.
    Zha T; Niinisto S; Xing Z; Wang KY; Kellomäki S; Barr AG
    Ann Bot; 2007 Feb; 99(2):345-53. PubMed ID: 17218344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks.
    Tramontana G; Migliavacca M; Jung M; Reichstein M; Keenan TF; Camps-Valls G; Ogee J; Verrelst J; Papale D
    Glob Chang Biol; 2020 Sep; 26(9):5235-5253. PubMed ID: 32497360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does growing atmospheric CO
    Launiainen S; Katul GG; Leppä K; Kolari P; Aslan T; Grönholm T; Korhonen L; Mammarella I; Vesala T
    Glob Chang Biol; 2022 May; 28(9):2910-2929. PubMed ID: 35112446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN.
    Ma J; Shugart HH; Yan X; Cao C; Wu S; Fang J
    Sci Total Environ; 2017 May; 586():939-951. PubMed ID: 28214117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable influence of photosynthetic thermal acclimation on future carbon uptake in Australian wooded ecosystems under climate change.
    Bennett AC; Knauer J; Bennett LT; Haverd V; Arndt SK
    Glob Chang Biol; 2024 Jan; 30(1):e17021. PubMed ID: 37962105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model.
    Kuribayashi M; Noh NJ; Saitoh TM; Ito A; Wakazuki Y; Muraoka H
    Int J Biometeorol; 2017 Jun; 61(6):989-1001. PubMed ID: 27924399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement.
    Ueyama M; Iwata H; Harazono Y
    Glob Chang Biol; 2014 Apr; 20(4):1161-73. PubMed ID: 24132878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.