These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28805371)

  • 1. Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Implications for HO
    Kowal SF; Allen SR; Kahan TF
    Environ Sci Technol; 2017 Sep; 51(18):10423-10430. PubMed ID: 28805371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting wavelength-resolved ultraviolet irradiance indoors and their impacts on indoor photochemistry.
    Zhou S; Kowal SF; Cregan AR; Kahan TF
    Indoor Air; 2021 Jul; 31(4):1187-1198. PubMed ID: 33373097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photolysis-driven indoor air chemistry following cleaning of hospital wards.
    Wang Z; Kowal SF; Carslaw N; Kahan TF
    Indoor Air; 2020 Nov; 30(6):1241-1255. PubMed ID: 32485006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-Resolved Measurements of Nitric Oxide, Nitrogen Dioxide, and Nitrous Acid in an Occupied New York Home.
    Zhou S; Young CJ; VandenBoer TC; Kowal SF; Kahan TF
    Environ Sci Technol; 2018 Aug; 52(15):8355-8364. PubMed ID: 29973042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Spatial Heterogeneity of Indoor OH and HO
    Won Y; Waring M; Rim D
    Environ Sci Technol; 2019 Dec; 53(24):14470-14478. PubMed ID: 31693359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing indoor gas phase oxidation capacity through real-time measurements of HONO and NO
    Liu J; Li S; Zeng J; Mekic M; Yu Z; Zhou W; Loisel G; Gandolfo A; Song W; Wang X; Zhou Z; Herrmann H; Li X; Gligorovski S
    Environ Sci Process Impacts; 2019 Aug; 21(8):1393-1402. PubMed ID: 31322150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources.
    Waring MS; Wells JR
    Atmos Environ (1994); 2015 Apr; 106():382-391. PubMed ID: 26855604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HONO Production from Gypsum Surfaces Following Exposure to NO
    Pandit S; Mora Garcia SL; Grassian VH
    Environ Sci Technol; 2021 Jul; 55(14):9761-9772. PubMed ID: 34236834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combustion Processes as a Source of High Levels of Indoor Hydroxyl Radicals through the Photolysis of Nitrous Acid.
    Bartolomei V; Gomez Alvarez E; Wittmer J; Tlili S; Strekowski R; Temime-Roussel B; Quivet E; Wortham H; Zetzsch C; Kleffmann J; Gligorovski S
    Environ Sci Technol; 2015 Jun; 49(11):6599-607. PubMed ID: 25942056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the major HO
    Mendez M; Amedro D; Blond N; Hauglustaine DA; Blondeau P; Afif C; Fittschen C; Schoemaecker C
    Indoor Air; 2017 Mar; 27(2):434-442. PubMed ID: 27317507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal characterization of irradiance and photolysis rate constants of indoor gas-phase species in the UTest house during HOMEChem.
    Zhou S; Kahan TF
    Indoor Air; 2022 Jan; 32(1):e12964. PubMed ID: 34854500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions.
    Scharko NK; Berke AE; Raff JD
    Environ Sci Technol; 2014 Oct; 48(20):11991-2001. PubMed ID: 25271384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemistry of nitrous acid (HONO) and nitrous acidium ion (H2ONO) in aqueous solution and ice.
    Anastasio C; Chu L
    Environ Sci Technol; 2009 Feb; 43(4):1108-14. PubMed ID: 19320166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modeling study of the impact of photolysis on indoor air quality.
    Wang Z; Shaw D; Kahan T; Schoemaecker C; Carslaw N
    Indoor Air; 2022 Jun; 32(6):e13054. PubMed ID: 35762241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of Hydroxyl Radical Concentrations during Indoor Cooking Events: Evidence of an Unmeasured Photolytic Source of Radicals.
    Reidy E; Bottorff BP; Rosales CMF; Cardoso-Saldaña FJ; Arata C; Zhou S; Wang C; Abeleira A; Hildebrandt Ruiz L; Goldstein AH; Novoselac A; Kahan TF; Abbatt JPD; Vance ME; Farmer DK; Stevens PS
    Environ Sci Technol; 2023 Jan; 57(2):896-908. PubMed ID: 36603843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid.
    Gómez Alvarez E; Amedro D; Afif C; Gligorovski S; Schoemaecker C; Fittschen C; Doussin JF; Wortham H
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13294-9. PubMed ID: 23898188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on contribution factor to atmospheric .OH by O3, HONO, HCHO and H2O2 in spring at Mangdang Mountain, Fujian Province].
    Liu H; Wang HX
    Huan Jing Ke Xue; 2013 Sep; 34(9):3352-7. PubMed ID: 24288975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the oxidative capacity of the atmosphere of the south coast air basin of California. 2. HOx radical production.
    Griffin RJ
    Environ Sci Technol; 2004 Feb; 38(3):753-7. PubMed ID: 14968860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpectedly High Indoor HONO Concentrations Associated with Photochemical NO
    Liu J; Deng H; Lakey PSJ; Jiang H; Mekic M; Wang X; Shiraiwa M; Gligorovski S
    Environ Sci Technol; 2020 Dec; 54(24):15680-15688. PubMed ID: 33232600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preliminary study on HOx photochemical processes in urban atmosphere of Guangzhou City].
    Ren XR; Wang HX; Shao KS; Tang XY
    Huan Jing Ke Xue; 2004 Jul; 25(4):28-31. PubMed ID: 15515931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.