These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28805393)

  • 1. Disappearance of the Superionic Phase Transition in Sub-5 nm Silver Iodide Nanoparticles.
    Yamamoto T; Kobayashi H; Kumara LSR; Sakata O; Nitta K; Uruga T; Kitagawa H
    Nano Lett; 2017 Sep; 17(9):5273-5276. PubMed ID: 28805393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Room-Temperature Superionic Conductivity of Silver Iodide Nanoparticles under Pressure.
    Yamamoto T; Maesato M; Hirao N; Kawaguchi SI; Kawaguchi S; Ohishi Y; Kubota Y; Kobayashi H; Kitagawa H
    J Am Chem Soc; 2017 Feb; 139(4):1392-1395. PubMed ID: 28094926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles.
    Makiura R; Yonemura T; Yamada T; Yamauchi M; Ikeda R; Kitagawa H; Kato K; Takata M
    Nat Mater; 2009 Jun; 8(6):476-80. PubMed ID: 19448614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic study of ionic conduction in silver iodide/mesoporous alumina composites 1: effects of pore size and filling level.
    Fukui Y; Yoshida Y; Kitagawa H; Jikihara Y
    Phys Chem Chem Phys; 2023 Sep; 25(37):25594-25602. PubMed ID: 37721053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast fabrication of thermally stable protein-coated silver iodide nanoparticles for solid-state superionic conductors.
    Tofanello A; Araujo JN; Nantes-Cardoso IL; Ferreira FF; Souza JA; Lim DW; Kitagawa H; Garcia W
    Colloids Surf B Biointerfaces; 2019 Apr; 176():47-54. PubMed ID: 30594058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure induced ionic-superionic transition in silver iodide at ambient temperature.
    Han YH; Wang HB; Troyan IA; Gao CX; Eremets MI
    J Chem Phys; 2014 Jan; 140(4):044708. PubMed ID: 25669568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-Controlled AgI/Ag Heteronanowires in Highly Ordered Alumina Membranes: Superionic Phase Stabilization and Conductivity.
    Zhang H; Tsuchiya T; Liang C; Terabe K
    Nano Lett; 2015 Aug; 15(8):5161-7. PubMed ID: 26189765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of partial structures of melts of superionic AgI and CuI and non-superionic AgCl.
    Kawakita Y; Tahara S; Fujii H; Kohara S; Takeda S
    J Phys Condens Matter; 2007 Aug; 19(33):335201. PubMed ID: 21694124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic study of ionic conduction in silver iodide/mesoporous alumina composites 2: effects of silver bromide doping.
    Fukui Y; Yoshida Y; Kitagawa H; Jikihara Y
    Phys Chem Chem Phys; 2024 May; 26(18):13675-13682. PubMed ID: 38654606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of a Proximity Effect in a (AgI)
    Correa H; Peña Lara D; Mosquera-Vargas E
    Molecules; 2024 May; 29(11):. PubMed ID: 38893367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced ionic conductivity of AgI nanowires/AAO composites fabricated by a simple approach.
    Liu LF; Lee SW; Li JB; Alexe M; Rao GH; Zhou WY; Lee JJ; Lee W; Gösele U
    Nanotechnology; 2008 Dec; 19(49):495706. PubMed ID: 21730686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-temperature stabilization of nanoscale superionic Ag₂Se.
    Hu T; Wittenberg JS; Lindenberg AM
    Nanotechnology; 2014 Oct; 25(41):415705. PubMed ID: 25249347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medium-range correlation of Ag ions in superionic melts of Ag2Se and AgI by reverse Monte Carlo structural modelling-connectivity and void distribution.
    Tahara S; Ueno H; Ohara K; Kawakita Y; Kohara S; Ohno S; Takeda S
    J Phys Condens Matter; 2011 Jun; 23(23):235102. PubMed ID: 21613697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient simultaneous reverse Monte Carlo modeling of pair-distribution functions and extended x-ray-absorption fine structure spectra of crystalline disordered materials.
    Németh K; Chapman KW; Balasubramanian M; Shyam B; Chupas PJ; Heald SM; Newville M; Klingler RJ; Winans RE; Almer JD; Sandi G; Srajer G
    J Chem Phys; 2012 Feb; 136(7):074105. PubMed ID: 22360234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse Monte Carlo modeling for local structures of noble metal nanoparticles using high-energy XRD and EXAFS.
    Harada M; Ikegami R; Kumara LSR; Kohara S; Sakata O
    RSC Adv; 2019 Sep; 9(51):29511-29521. PubMed ID: 35531547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical structure, bonding, and thermodynamics of the superionic sublattice in alpha-AgI.
    Wood BC; Marzari N
    Phys Rev Lett; 2006 Oct; 97(16):166401. PubMed ID: 17155418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic paramagnetic defects probe the superionic phase transition in mechanochemically synthesized AgI nanocrystals.
    Bharathi Mohan D; Sunandana CS
    J Phys Chem B; 2006 Mar; 110(10):4569-75. PubMed ID: 16526686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of AgI-Ag2O-SeO2 glass-nanocomposites embedded with beta-AgI and Ag2SeO3 nanocrystals.
    Deb B; Ghosh A
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6752-9. PubMed ID: 21137792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal expansion of silver iodide-silver molybdate glasses at low temperatures.
    Mandanici A; Raimondo A; Cutroni M; Ramos MA; Rodrigo JG; Vieira S; Armellini C; Rocca F
    J Chem Phys; 2009 May; 130(20):204508. PubMed ID: 19485458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes.
    Lewis RN; Zweytick D; Pabst G; Lohner K; McElhaney RN
    Biophys J; 2007 May; 92(9):3166-77. PubMed ID: 17293402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.