These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28805506)

  • 1. Kinematic and neuromuscular relationships between lower extremity clinical movement assessments.
    Mauntel TC; Cram TR; Frank BS; Begalle RL; Norcross MF; Blackburn JT; Padua DA
    Sports Biomech; 2018 Jun; 17(2):273-284. PubMed ID: 28805506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower extremity kinematic asymmetry in male and female athletes performing jump-landing tasks.
    Pappas E; Carpes FP
    J Sci Med Sport; 2012 Jan; 15(1):87-92. PubMed ID: 21925949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The acute effects of an intense stretch-shortening cycle fatigue protocol on the neuromechanical parameters of lower limbs in men and prepubescent boys.
    Lazaridis S; Patikas DA; Bassa E; Tsatalas T; Hatzikotoulas K; Ftikas C; Kotzamanidis C
    J Sports Sci; 2018 Jan; 36(2):131-139. PubMed ID: 28282755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromechanical synergies in single-leg landing reveal changes in movement control.
    Nordin AD; Dufek JS
    Hum Mov Sci; 2016 Oct; 49():66-78. PubMed ID: 27341613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of lower extremity muscle activation and passive range of motion on single leg squat performance.
    Mauntel TC; Begalle RL; Cram TR; Frank BS; Hirth CJ; Blackburn T; Padua DA
    J Strength Cond Res; 2013 Jul; 27(7):1813-23. PubMed ID: 23096063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plyometric Long Jump Training With Progressive Loading Improves Kinetic and Kinematic Swimming Start Parameters.
    Rebutini VZ; Pereira G; Bohrer RC; Ugrinowitsch C; Rodacki AL
    J Strength Cond Res; 2016 Sep; 30(9):2392-8. PubMed ID: 24531431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomechanical comparison of the vertical jump, power clean, and jump squat.
    MacKenzie SJ; Lavers RJ; Wallace BB
    J Sports Sci; 2014; 32(16):1576-85. PubMed ID: 24738710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failed jump landing trials: deficits in neuromuscular control.
    Wikstrom EA; Tillman MD; Schenker S; Borsa PA
    Scand J Med Sci Sports; 2008 Feb; 18(1):55-61. PubMed ID: 17346287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of quasi-static and dynamic squats: a three-dimensional kinematic, kinetic and electromyographic study of the lower limbs.
    Clément J; Hagemeister N; Aissaoui R; de Guise JA
    Gait Posture; 2014; 40(1):94-100. PubMed ID: 24656716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task.
    Stearns KM; Powers CM
    Am J Sports Med; 2014 Mar; 42(3):602-9. PubMed ID: 24464929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular characteristics of drop and hurdle jumps with different types of landings.
    Cappa DF; Behm DG
    J Strength Cond Res; 2013 Nov; 27(11):3011-20. PubMed ID: 23442288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular Control of Vertical Jumps in Female Adolescents.
    Scarborough DM; Linderman SE; Cohen VA; Berkson EM; Eckert MM; Oh LS
    Sports Health; 2019; 11(4):343-349. PubMed ID: 31145864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative adaptations of lower limb biomechanics during unilateral and bilateral landings after different neuromuscular-based ACL injury prevention protocols.
    Brown TN; Palmieri-Smith RM; McLean SG
    J Strength Cond Res; 2014 Oct; 28(10):2859-71. PubMed ID: 24714537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris: an EMG study with rehabilitation implications.
    Zebis MK; Skotte J; Andersen CH; Mortensen P; Petersen HH; Viskaer TC; Jensen TL; Bencke J; Andersen LL
    Br J Sports Med; 2013 Dec; 47(18):1192-8. PubMed ID: 22736206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower extremity biomechanics during a regular and counterbalanced squat.
    Lynn SK; Noffal GJ
    J Strength Cond Res; 2012 Sep; 26(9):2417-25. PubMed ID: 22076098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preventing non-contact ACL injuries in female athletes: What can we learn from dancers?
    Turner C; Crow S; Crowther T; Keating B; Saupan T; Pyfer J; Vialpando K; Lee SP
    Phys Ther Sport; 2018 May; 31():1-8. PubMed ID: 29447910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Fatigue Alters Lower-extremity Neuromechanics during a Forward-side Jump.
    Kim H; Son S; Seeley MK; Hopkins JT
    Int J Sports Med; 2015 Dec; 36(14):1192-200. PubMed ID: 26422053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences and correlations in knee and hip mechanics during single-leg landing, single-leg squat, double-leg landing, and double-leg squat tasks.
    Donohue MR; Ellis SM; Heinbaugh EM; Stephenson ML; Zhu Q; Dai B
    Res Sports Med; 2015; 23(4):394-411. PubMed ID: 26275102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of lower extremity kinematics and hip muscle activation during rehabilitation tasks between sexes.
    Dwyer MK; Boudreau SN; Mattacola CG; Uhl TL; Lattermann C
    J Athl Train; 2010; 45(2):181-90. PubMed ID: 20210622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomechanical investigation of a single-limb squat: implications for lower extremity rehabilitation exercise.
    Richards J; Thewlis D; Selfe J; Cunningham A; Hayes C
    J Athl Train; 2008; 43(5):477-82. PubMed ID: 18833310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.