These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 28805965)

  • 61. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change.
    Struebig MJ; Wilting A; Gaveau DLA; Meijaard E; Smith RJ; ; Fischer M; Metcalfe K; Kramer-Schadt S
    Curr Biol; 2015 Feb; 25(3):372-378. PubMed ID: 25619764
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluating the connectivity of a protected areas' network under the prism of global change: the efficiency of the European Natura 2000 network for four birds of prey.
    Mazaris AD; Papanikolaou AD; Barbet-Massin M; Kallimanis AS; Jiguet F; Schmeller DS; Pantis JD
    PLoS One; 2013; 8(3):e59640. PubMed ID: 23527237
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The land-use legacy effect: Towards a mechanistic understanding of time-lagged water quality responses to land use/cover.
    Martin SL; Hayes DB; Kendall AD; Hyndman DW
    Sci Total Environ; 2017 Feb; 579():1794-1803. PubMed ID: 27932215
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.
    Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA
    Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of climate and land-cover change on the conservation status of gibbons.
    Yang L; Chen T; Shi KC; Zhang L; Lwin N; Fan PF
    Conserv Biol; 2023 Feb; 37(1):e14045. PubMed ID: 36511895
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil.
    Mello K; Taniwaki RH; Paula FR; Valente RA; Randhir TO; Macedo DR; Leal CG; Rodrigues CB; Hughes RM
    J Environ Manage; 2020 Sep; 270():110879. PubMed ID: 32721318
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species.
    Rougier T; Lassalle G; Drouineau H; Dumoulin N; Faure T; Deffuant G; Rochard E; Lambert P
    PLoS One; 2015; 10(10):e0139194. PubMed ID: 26426280
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation.
    Lambert E; Pierce GJ; Hall K; Brereton T; Dunn TE; Wall D; Jepson PD; Deaville R; MacLeod CD
    Glob Chang Biol; 2014 Jun; 20(6):1782-93. PubMed ID: 24677422
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Will climate change promote future invasions?
    Bellard C; Thuiller W; Leroy B; Genovesi P; Bakkenes M; Courchamp F
    Glob Chang Biol; 2013 Dec; 19(12):3740-8. PubMed ID: 23913552
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change.
    Allyn AJ; Alexander MA; Franklin BS; Massiot-Granier F; Pershing AJ; Scott JD; Mills KE
    PLoS One; 2020; 15(4):e0231595. PubMed ID: 32298349
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Estimating possible bumblebee range shifts in response to climate and land cover changes.
    Suzuki-Ohno Y; Yokoyama J; Nakashizuka T; Kawata M
    Sci Rep; 2020 Nov; 10(1):19622. PubMed ID: 33184331
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CLIMATE CHANGE. Climate change impacts on bumblebees converge across continents.
    Kerr JT; Pindar A; Galpern P; Packer L; Potts SG; Roberts SM; Rasmont P; Schweiger O; Colla SR; Richardson LL; Wagner DL; Gall LF; Sikes DS; Pantoja A
    Science; 2015 Jul; 349(6244):177-80. PubMed ID: 26160945
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Prediction uncertainty of environmental change effects on temperate European biodiversity.
    Dormann CF; Schweiger O; Arens P; Augenstein I; Aviron S; Bailey D; Baudry J; Billeter R; Bugter R; Bukácek R; Burel F; Cerny M; Cock RD; De Blust G; DeFilippi R; Diekötter T; Dirksen J; Durka W; Edwards PJ; Frenzel M; Hamersky R; Hendrickx F; Herzog F; Klotz S; Koolstra B; Lausch A; Le Coeur D; Liira J; Maelfait JP; Opdam P; Roubalova M; Schermann-Legionnet A; Schermann N; Schmidt T; Smulders MJ; Speelmans M; Simova P; Verboom J; van Wingerden W; Zobel M
    Ecol Lett; 2008 Mar; 11(3):235-44. PubMed ID: 18070098
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.
    Hodd RL; Bourke D; Skeffington MS
    PLoS One; 2014; 9(4):e95147. PubMed ID: 24752011
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Improving the use of species distribution models in conservation planning and management under climate change.
    Porfirio LL; Harris RM; Lefroy EC; Hugh S; Gould SF; Lee G; Bindoff NL; Mackey B
    PLoS One; 2014; 9(11):e113749. PubMed ID: 25420020
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Future scenarios impact on land use change and habitat quality in Lithuania.
    Gomes E; Inácio M; Bogdzevič K; Kalinauskas M; Karnauskaitė D; Pereira P
    Environ Res; 2021 Jun; 197():111101. PubMed ID: 33831413
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of species traits and environmental predictors on performance and transferability of ecological niche models.
    Regos A; Gagne L; Alcaraz-Segura D; Honrado JP; Domínguez J
    Sci Rep; 2019 Mar; 9(1):4221. PubMed ID: 30862919
    [TBL] [Abstract][Full Text] [Related]  

  • 78. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech.
    Saltré F; Duputié A; Gaucherel C; Chuine I
    Glob Chang Biol; 2015 Feb; 21(2):897-910. PubMed ID: 25330385
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A dynamic land use/land cover input helps in picturing the Sahelian paradox: Assessing variability and attribution of changes in surface runoff in a Sahelian watershed.
    Yonaba R; Biaou AC; Koïta M; Tazen F; Mounirou LA; Zouré CO; Queloz P; Karambiri H; Yacouba H
    Sci Total Environ; 2021 Feb; 757():143792. PubMed ID: 33280876
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran.
    Aghsaei H; Mobarghaee Dinan N; Moridi A; Asadolahi Z; Delavar M; Fohrer N; Wagner PD
    Sci Total Environ; 2020 Apr; 712():136449. PubMed ID: 32050376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.