BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28806854)

  • 1. Generation of Xeno-Free, cGMP-Compliant Patient-Specific iPSCs from Skin Biopsy.
    Wiley LA; Anfinson KR; Cranston CM; Kaalberg EE; Collins MM; Mullins RF; Stone EM; Tucker BA
    Curr Protoc Stem Cell Biol; 2017 Aug; 42():4A.12.1-4A.12.14. PubMed ID: 28806854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions.
    Rodríguez-Pizà I; Richaud-Patin Y; Vassena R; González F; Barrero MJ; Veiga A; Raya A; Izpisúa Belmonte JC
    Stem Cells; 2010 Jan; 28(1):36-44. PubMed ID: 19890879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness.
    Wiley LA; Burnight ER; DeLuca AP; Anfinson KR; Cranston CM; Kaalberg EE; Penticoff JA; Affatigato LM; Mullins RF; Stone EM; Tucker BA
    Sci Rep; 2016 Jul; 6():30742. PubMed ID: 27471043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cGMP-Manufactured Human Induced Pluripotent Stem Cells Are Available for Pre-clinical and Clinical Applications.
    Baghbaderani BA; Tian X; Neo BH; Burkall A; Dimezzo T; Sierra G; Zeng X; Warren K; Kovarcik DP; Fellner T; Rao MS
    Stem Cell Reports; 2015 Oct; 5(4):647-59. PubMed ID: 26411904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-Induced Pluripotent Stem Cell Culture Methods Under cGMP Conditions.
    Rivera T; Zhao Y; Ni Y; Wang J
    Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e117. PubMed ID: 32649060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of a human iPSC line from a patient with retinitis pigmentosa caused by mutation in PRPF8 gene.
    Lukovic D; Bolinches-Amorós A; Artero-Castro A; Pascual B; Carballo M; Hernan I; Erceg S
    Stem Cell Res; 2017 May; 21():23-25. PubMed ID: 28677533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells.
    Lu HF; Chai C; Lim TC; Leong MF; Lim JK; Gao S; Lim KL; Wan AC
    Biomaterials; 2014 Mar; 35(9):2816-26. PubMed ID: 24411336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cGMP Generation of Human Induced Pluripotent Stem Cells with Messenger RNA.
    Ni Y; Zhao Y; Warren L; Higginbotham J; Wang J
    Curr Protoc Stem Cell Biol; 2016 Nov; 39(1):4A.6.1-4A.6.25. PubMed ID: 31816187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprogramming of Human Fibroblasts with Non-integrating RNA Virus on Feeder-Free or Xeno-Free Conditions.
    Lieu PT
    Methods Mol Biol; 2015; 1330():47-54. PubMed ID: 26621588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of pluripotent stem cells by reprogramming human ocular fibroblasts under xeno-free conditions.
    Xiong Y; Liu Y; Ge J
    Arq Bras Oftalmol; 2018; 81(5):376-383. PubMed ID: 30208139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automating iPSC generation to enable autologous photoreceptor cell replacement therapy.
    Bohrer LR; Stone NE; Mullin NK; Voigt AP; Anfinson KR; Fick JL; Luangphakdy V; Hittle B; Powell K; Muschler GF; Mullins RF; Stone EM; Tucker BA
    J Transl Med; 2023 Feb; 21(1):161. PubMed ID: 36855199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions.
    Wang J; Hao J; Bai D; Gu Q; Han W; Wang L; Tan Y; Li X; Xue K; Han P; Liu Z; Jia Y; Wu J; Liu L; Wang L; Li W; Liu Z; Zhou Q
    Stem Cell Res Ther; 2015 Nov; 6():223. PubMed ID: 26564165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cGMP-Compliant Expansion of Human iPSC Cultures as Adherent Monolayers.
    Parr AM; Walsh PJ; Truong V; Dutton JR
    Methods Mol Biol; 2016; 1357():221-9. PubMed ID: 25863788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroblast-like cells as an effective feeder for the cultivation and derivation of new lines of human induced pluripotent stem cells.
    Novosadova EV; Manuilova ES; Arsenyeva EL; Grivennikov IA; Myasoedov NF
    Dokl Biochem Biophys; 2016 Sep; 470(1):353-356. PubMed ID: 27817014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation of Neural Stem Cells from Mouse Induced Pluripotent Stem Cells.
    Karanfil I; Bagci-Onder T
    Methods Mol Biol; 2016; 1357():329-38. PubMed ID: 25863785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of induced pluripotent stem cell line (ZZUi0012-A) from a patient with Fahr's disease caused by a novel mutation in SLC20A2 gene.
    Zhang Q; Li Z; Sun H; Zhang S; Zhang J; Wang Y; Fang H; Xu Y
    Stem Cell Res; 2019 Mar; 35():101395. PubMed ID: 30776674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Footprint- and xeno-free human iPSCs derived from urine cells using extracellular matrix-based culture conditions.
    Lee KI; Kim HT; Hwang DY
    Biomaterials; 2014 Sep; 35(29):8330-8. PubMed ID: 24994040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivation of GMP-compliant integration-free hiPSCs using modified mRNAs.
    Durruthy JD; Sebastiano V
    Methods Mol Biol; 2015; 1283():31-42. PubMed ID: 25304205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.
    Trevisan M; Desole G; Costanzi G; Lavezzo E; Palù G; Barzon L
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of functional reprogramming factors in mammalian cell using FLAG -Tag.
    Han MJ; Kim HR; O'Reilly C; Kim CH
    Biochem Biophys Res Commun; 2017 Oct; 492(2):154-160. PubMed ID: 28802578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.