BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28807609)

  • 1. CspB of an arctic bacterium, Polaribacter irgensii KOPRI 22228, confers extraordinary freeze-tolerance.
    Jung YH; Lee YK; Lee HK; Lee K; Im H
    Braz J Microbiol; 2018; 49(1):97-103. PubMed ID: 28807609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intrinsically disordered domain in Polaribacter irgensii KOPRI 22228 CspB confers extraordinary freeze-tolerance.
    Jung YH; Uh JH; Lee K; Im H
    Biochem Biophys Res Commun; 2018 Feb; 496(2):374-380. PubMed ID: 29330047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rescue of a cold-sensitive mutant at low temperatures by cold shock proteins from Polaribacter irgensii KOPRI 22228.
    Uh JH; Jung YH; Lee YK; Lee HK; Im H
    J Microbiol; 2010 Dec; 48(6):798-802. PubMed ID: 21221937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of cold shock protein A of Psychromonas arctica KOPRI 22215 confers cold-resistance.
    Jung YH; Yi JY; Jung HJ; Lee YK; Lee HK; Naicker MC; Uh JH; Jo IS; Jung EJ; Im H
    Protein J; 2010 Feb; 29(2):136-42. PubMed ID: 20169403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cspB encodes a major cold shock protein in Clostridium botulinum ATCC 3502.
    Söderholm H; Lindström M; Somervuo P; Heap J; Minton N; Lindén J; Korkeala H
    Int J Food Microbiol; 2011 Mar; 146(1):23-30. PubMed ID: 21367479
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Suman ; Chaudhary M; Nain V
    J Biomol Struct Dyn; 2021 Feb; 39(3):841-850. PubMed ID: 31959085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa.
    Burbank LP; Stenger DC
    Mol Plant Microbe Interact; 2016 May; 29(5):335-44. PubMed ID: 26808446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel cold-regulated cold shock domain containing protein from scallop Chlamys farreri with nucleic acid-binding activity.
    Yang C; Wang L; Siva VS; Shi X; Jiang Q; Wang J; Zhang H; Song L
    PLoS One; 2012; 7(2):e32012. PubMed ID: 22359656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock.
    Czapski TR; Trun N
    Gene; 2014 Aug; 547(1):91-7. PubMed ID: 24952137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and transcriptional control of Caulobacter crescentus genes encoding proteins containing a cold shock domain.
    Lang EA; Marques MV
    J Bacteriol; 2004 Sep; 186(17):5603-13. PubMed ID: 15317764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures.
    Graumann P; Wendrich TM; Weber MH; Schröder K; Marahiel MA
    Mol Microbiol; 1997 Aug; 25(4):741-56. PubMed ID: 9379903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyr51: Key Determinant of the Low Thermostability of the Colwellia psychrerythraea Cold-Shock Protein.
    Lee Y; Kwak C; Jeong KW; Durai P; Ryu KS; Kim EH; Cheong C; Ahn HC; Kim HJ; Kim Y
    Biochemistry; 2018 Jul; 57(26):3625-3640. PubMed ID: 29737840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and interaction of Corynebacterium pseudotuberculosis cold shock protein A with Y-box single-stranded DNA fragment.
    Caruso IP; Panwalkar V; Coronado MA; Dingley AJ; Cornélio ML; Willbold D; Arni RK; Eberle RJ
    FEBS J; 2018 Jan; 285(2):372-390. PubMed ID: 29197185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CspA encodes a major cold shock protein in Himalayan psychrotolerant Pseudomonas strains.
    Bisht SC; Joshi GK; Mishra PK
    Interdiscip Sci; 2014 Jun; 6(2):140-8. PubMed ID: 25172452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium Psychrobacter sp. PAMC 21119 at subzero temperatures.
    Koh HY; Park H; Lee JH; Han SJ; Sohn YC; Lee SG
    Environ Microbiol; 2017 Feb; 19(2):628-644. PubMed ID: 27750393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traversing DNA-Protein Interactions Between Mesophilic and Thermophilic Bacteria: Implications from Their Cold Shock Response.
    Roy A; Ray S
    Mol Biotechnol; 2024 Apr; 66(4):824-844. PubMed ID: 36905463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Phylogeny and Evolution of Cold Shock Proteins: From Enteropathogenic
    Yu T; Keto-Timonen R; Jiang X; Virtanen JP; Korkeala H
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31434224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward understanding life under subzero conditions: the significance of exploring psychrophilic "cold-shock" proteins.
    Kuhn E
    Astrobiology; 2012 Nov; 12(11):1078-86. PubMed ID: 23082745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of changes in gene expression due to RNA melting activities of translation initiation factor IF1 and a cold shock protein of the CspA family.
    Phadtare S; Severinov K
    Genes Cells; 2009 Nov; 14(11):1227-39. PubMed ID: 19840122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.