These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28807683)

  • 1. Nano-sized drug carriers: Extravasation, intratumoral distribution, and their modeling.
    Nichols JW; Sakurai Y; Harashima H; Bae YH
    J Control Release; 2017 Dec; 267():31-46. PubMed ID: 28807683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intratumoral drug delivery with nanoparticulate carriers.
    Holback H; Yeo Y
    Pharm Res; 2011 Aug; 28(8):1819-30. PubMed ID: 21213021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of tumor microenvironment for improved delivery and intratumor distribution of nanocarriers.
    Ishida T; Kiwada H
    Biol Pharm Bull; 2013; 36(5):692-7. PubMed ID: 23649327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems.
    Kratz F; Warnecke A
    J Control Release; 2012 Dec; 164(2):221-35. PubMed ID: 22705248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy.
    Rapoport N; Gao Z; Kennedy A
    J Natl Cancer Inst; 2007 Jul; 99(14):1095-106. PubMed ID: 17623798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration.
    Wan J; Geng S; Zhao H; Peng X; Zhou Q; Li H; He M; Zhao Y; Yang X; Xu H
    J Control Release; 2016 Aug; 235():328-336. PubMed ID: 27282415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles.
    Jiang W; Huang Y; An Y; Kim BY
    ACS Nano; 2015 Sep; 9(9):8689-96. PubMed ID: 26212564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-carriers for the Treatment of Tuberculosis.
    Gilani SJ; Ameeduzzafar ; Jafar M; Shakil K; Imam SS
    Recent Pat Antiinfect Drug Discov; 2017; 12(2):95-106. PubMed ID: 28595544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles.
    Hwang HY; Kim IS; Kwon IC; Kim YH
    J Control Release; 2008 May; 128(1):23-31. PubMed ID: 18374444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy.
    Min KH; Park K; Kim YS; Bae SM; Lee S; Jo HG; Park RW; Kim IS; Jeong SY; Kim K; Kwon IC
    J Control Release; 2008 May; 127(3):208-18. PubMed ID: 18336946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles.
    Sinek J; Frieboes H; Zheng X; Cristini V
    Biomed Microdevices; 2004 Dec; 6(4):297-309. PubMed ID: 15548877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-enabled delivery of diverse payloads across complex biological barriers.
    Ross KA; Brenza TM; Binnebose AM; Phanse Y; Kanthasamy AG; Gendelman HE; Salem AK; Bartholomay LC; Bellaire BH; Narasimhan B
    J Control Release; 2015 Dec; 219():548-559. PubMed ID: 26315817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy.
    Li W; Yi X; Liu X; Zhang Z; Fu Y; Gong T
    J Control Release; 2016 Mar; 225():170-82. PubMed ID: 26826304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: mechanisms, key factors, and their implications.
    Cho YW; Park SA; Han TH; Son DH; Park JS; Oh SJ; Moon DH; Cho KJ; Ahn CH; Byun Y; Kim IS; Kwon IC; Kim SY
    Biomaterials; 2007 Feb; 28(6):1236-47. PubMed ID: 17126900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping Tumor Microenvironment for Improving Nanoparticle Delivery.
    Gao H
    Curr Drug Metab; 2016; 17(8):731-736. PubMed ID: 27396754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature.
    Chou CY; Chang WI; Horng TL; Lin WL
    PLoS One; 2017; 12(12):e0189802. PubMed ID: 29287079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical oncology: New targets for nanomedicine.
    Nicolas-Boluda A; Silva AKA; Fournel S; Gazeau F
    Biomaterials; 2018 Jan; 150():87-99. PubMed ID: 29035739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.