BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28807683)

  • 1. Nano-sized drug carriers: Extravasation, intratumoral distribution, and their modeling.
    Nichols JW; Sakurai Y; Harashima H; Bae YH
    J Control Release; 2017 Dec; 267():31-46. PubMed ID: 28807683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intratumoral drug delivery with nanoparticulate carriers.
    Holback H; Yeo Y
    Pharm Res; 2011 Aug; 28(8):1819-30. PubMed ID: 21213021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of tumor microenvironment for improved delivery and intratumor distribution of nanocarriers.
    Ishida T; Kiwada H
    Biol Pharm Bull; 2013; 36(5):692-7. PubMed ID: 23649327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems.
    Kratz F; Warnecke A
    J Control Release; 2012 Dec; 164(2):221-35. PubMed ID: 22705248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy.
    Rapoport N; Gao Z; Kennedy A
    J Natl Cancer Inst; 2007 Jul; 99(14):1095-106. PubMed ID: 17623798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration.
    Wan J; Geng S; Zhao H; Peng X; Zhou Q; Li H; He M; Zhao Y; Yang X; Xu H
    J Control Release; 2016 Aug; 235():328-336. PubMed ID: 27282415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles.
    Jiang W; Huang Y; An Y; Kim BY
    ACS Nano; 2015 Sep; 9(9):8689-96. PubMed ID: 26212564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-carriers for the Treatment of Tuberculosis.
    Gilani SJ; Ameeduzzafar ; Jafar M; Shakil K; Imam SS
    Recent Pat Antiinfect Drug Discov; 2017; 12(2):95-106. PubMed ID: 28595544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles.
    Hwang HY; Kim IS; Kwon IC; Kim YH
    J Control Release; 2008 May; 128(1):23-31. PubMed ID: 18374444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy.
    Min KH; Park K; Kim YS; Bae SM; Lee S; Jo HG; Park RW; Kim IS; Jeong SY; Kim K; Kwon IC
    J Control Release; 2008 May; 127(3):208-18. PubMed ID: 18336946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles.
    Sinek J; Frieboes H; Zheng X; Cristini V
    Biomed Microdevices; 2004 Dec; 6(4):297-309. PubMed ID: 15548877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-enabled delivery of diverse payloads across complex biological barriers.
    Ross KA; Brenza TM; Binnebose AM; Phanse Y; Kanthasamy AG; Gendelman HE; Salem AK; Bartholomay LC; Bellaire BH; Narasimhan B
    J Control Release; 2015 Dec; 219():548-559. PubMed ID: 26315817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy.
    Li W; Yi X; Liu X; Zhang Z; Fu Y; Gong T
    J Control Release; 2016 Mar; 225():170-82. PubMed ID: 26826304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: mechanisms, key factors, and their implications.
    Cho YW; Park SA; Han TH; Son DH; Park JS; Oh SJ; Moon DH; Cho KJ; Ahn CH; Byun Y; Kim IS; Kwon IC; Kim SY
    Biomaterials; 2007 Feb; 28(6):1236-47. PubMed ID: 17126900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping Tumor Microenvironment for Improving Nanoparticle Delivery.
    Gao H
    Curr Drug Metab; 2016; 17(8):731-736. PubMed ID: 27396754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature.
    Chou CY; Chang WI; Horng TL; Lin WL
    PLoS One; 2017; 12(12):e0189802. PubMed ID: 29287079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical oncology: New targets for nanomedicine.
    Nicolas-Boluda A; Silva AKA; Fournel S; Gazeau F
    Biomaterials; 2018 Jan; 150():87-99. PubMed ID: 29035739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.