These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Bcl-xL-mediated remodeling of rod and cone synaptic mitochondria after postnatal lead exposure: electron microscopy, tomography and oxygen consumption. Perkins GA; Scott R; Perez A; Ellisman MH; Johnson JE; Fox DA Mol Vis; 2012; 18():3029-48. PubMed ID: 23288995 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial function and energy metabolism in neuronal HT22 cells resistant to oxidative stress. Pfeiffer A; Jaeckel M; Lewerenz J; Noack R; Pouya A; Schacht T; Hoffmann C; Winter J; Schweiger S; Schäfer MK; Methner A Br J Pharmacol; 2014 Apr; 171(8):2147-58. PubMed ID: 24319993 [TBL] [Abstract][Full Text] [Related]
4. Improvement of neuronal differentiation by carbon monoxide: Role of pentose phosphate pathway. Almeida AS; Soares NL; Sequeira CO; Pereira SA; Sonnewald U; Vieira HLA Redox Biol; 2018 Jul; 17():338-347. PubMed ID: 29793167 [TBL] [Abstract][Full Text] [Related]
5. Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction. Banerjee S; Aykin-Burns N; Krager KJ; Shah SK; Melnyk SB; Hauer-Jensen M; Pawar SA Free Radic Biol Med; 2016 Oct; 99():296-307. PubMed ID: 27554969 [TBL] [Abstract][Full Text] [Related]
6. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695 [TBL] [Abstract][Full Text] [Related]
7. Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose. Miwa H; Shikami M; Goto M; Mizuno S; Takahashi M; Tsunekawa-Imai N; Ishikawa T; Mizutani M; Horio T; Gotou M; Yamamoto H; Wakabayashi M; Watarai M; Hanamura I; Imamura A; Mihara H; Nitta M Oncol Rep; 2013 May; 29(5):2053-7. PubMed ID: 23440281 [TBL] [Abstract][Full Text] [Related]
8. Combined arginine and ascorbic acid treatment induces apoptosis in the hepatoma cell line HA22T/VGH and changes in redox status involving the pentose phosphate pathway and reactive oxygen and nitrogen species. Hsieh BS; Huang LW; Su SJ; Cheng HL; Hu YC; Hung TC; Chang KL J Nutr Biochem; 2011 Mar; 22(3):234-41. PubMed ID: 20558052 [TBL] [Abstract][Full Text] [Related]
9. Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart. Peoples JNR; Maxmillian T; Le Q; Nadtochiy SM; Brookes PS; Porter GA; Davidson VL; Ebert SN J Biol Chem; 2018 May; 293(18):6925-6941. PubMed ID: 29540484 [TBL] [Abstract][Full Text] [Related]
10. Geissoschizine methyl ether protects oxidative stress-mediated cytotoxicity in neurons through the 'Neuronal Warburg Effect'. Sun J; Ren X; Qi W; Yuan D; Simpkins JW J Ethnopharmacol; 2016 Jul; 187():249-58. PubMed ID: 27114061 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity. Rodrigues-Silva E; Siqueira-Santos ES; Ruas JS; Ignarro RS; Figueira TR; Rogério F; Castilho RF J Neurooncol; 2017 Jul; 133(3):519-529. PubMed ID: 28540666 [TBL] [Abstract][Full Text] [Related]
12. Glucose metabolism during in vitro maturation of mouse oocytes: An study using RNA interference. Xie HL; Zhu S; Zhang J; Wen J; Yuan HJ; Pan LZ; Luo MJ; Tan JH J Cell Physiol; 2018 Sep; 233(9):6952-6964. PubMed ID: 29336483 [TBL] [Abstract][Full Text] [Related]
13. An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake. Huang H; Hu X; Eno CO; Zhao G; Li C; White C J Biol Chem; 2013 Jul; 288(27):19870-81. PubMed ID: 23720737 [TBL] [Abstract][Full Text] [Related]
14. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells. Nakashima RA; Paggi MG; Pedersen PL Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833 [TBL] [Abstract][Full Text] [Related]
15. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Dott W; Mistry P; Wright J; Cain K; Herbert KE Redox Biol; 2014; 2():224-33. PubMed ID: 24494197 [TBL] [Abstract][Full Text] [Related]
16. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Alavian KN; Li H; Collis L; Bonanni L; Zeng L; Sacchetti S; Lazrove E; Nabili P; Flaherty B; Graham M; Chen Y; Messerli SM; Mariggio MA; Rahner C; McNay E; Shore GC; Smith PJ; Hardwick JM; Jonas EA Nat Cell Biol; 2011 Sep; 13(10):1224-33. PubMed ID: 21926988 [TBL] [Abstract][Full Text] [Related]
17. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. Lei S; Zavala-Flores L; Garcia-Garcia A; Nandakumar R; Huang Y; Madayiputhiya N; Stanton RC; Dodds ED; Powers R; Franco R ACS Chem Biol; 2014 Sep; 9(9):2032-48. PubMed ID: 24937102 [TBL] [Abstract][Full Text] [Related]
18. PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H(+)-ATP Synthase. García-Bermúdez J; Sánchez-Aragó M; Soldevilla B; Del Arco A; Nuevo-Tapioles C; Cuezva JM Cell Rep; 2015 Sep; 12(12):2143-55. PubMed ID: 26387949 [TBL] [Abstract][Full Text] [Related]
19. Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death. Balsa E; Perry EA; Bennett CF; Jedrychowski M; Gygi SP; Doench JG; Puigserver P Nat Commun; 2020 Jun; 11(1):2714. PubMed ID: 32483148 [TBL] [Abstract][Full Text] [Related]
20. Human NARP mitochondrial mutation metabolism corrected with alpha-ketoglutarate/aspartate: a potential new therapy. Sgarbi G; Casalena GA; Baracca A; Lenaz G; DiMauro S; Solaini G Arch Neurol; 2009 Aug; 66(8):951-7. PubMed ID: 19667215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]