These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28807873)

  • 1. Neurophysiologically-informed markers of individual variability and pharmacological manipulation of human cortical gamma.
    Shaw AD; Moran RJ; Muthukumaraswamy SD; Brealy J; Linden DE; Friston KJ; Singh KD
    Neuroimage; 2017 Nov; 161():19-31. PubMed ID: 28807873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant reductions in human visual gamma frequency by the gaba reuptake inhibitor tiagabine revealed by robust peak frequency estimation.
    Magazzini L; Muthukumaraswamy SD; Campbell AE; Hamandi K; Lingford-Hughes A; Myers JF; Nutt DJ; Sumner P; Wilson SJ; Singh KD
    Hum Brain Mapp; 2016 Nov; 37(11):3882-3896. PubMed ID: 27273695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intersubject variability and induced gamma in the visual cortex: DCM with empirical Bayes and neural fields.
    Pinotsis DA; Perry G; Litvak V; Singh KD; Friston KJ
    Hum Brain Mapp; 2016 Dec; 37(12):4597-4614. PubMed ID: 27593199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory, Computational, and Behavioral Evidence for Impaired GABAergic Inhibition in Schizophrenia.
    Shaw AD; Knight L; Freeman TCA; Williams GM; Moran RJ; Friston KJ; Walters JTR; Singh KD
    Schizophr Bull; 2020 Feb; 46(2):345-353. PubMed ID: 31219602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABA-ergic Dynamics in Human Frontotemporal Networks Confirmed by Pharmaco-Magnetoencephalography.
    Adams NE; Hughes LE; Phillips HN; Shaw AD; Murley AG; Nesbitt D; Cope TE; Bevan-Jones WR; Passamonti L; Rowe JB
    J Neurosci; 2020 Feb; 40(8):1640-1649. PubMed ID: 31915255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevating endogenous GABA levels with GAT-1 blockade modulates evoked but not induced responses in human visual cortex.
    Muthukumaraswamy SD; Myers JF; Wilson SJ; Nutt DJ; Hamandi K; Lingford-Hughes A; Singh KD
    Neuropsychopharmacology; 2013 May; 38(6):1105-12. PubMed ID: 23361120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic causal modelling of lateral interactions in the visual cortex.
    Pinotsis DA; Schwarzkopf DS; Litvak V; Rees G; Barnes G; Friston KJ
    Neuroimage; 2013 Feb; 66():563-76. PubMed ID: 23128079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative modelling of the thalamo-cortical circuit mechanisms underlying the neurophysiological effects of ketamine.
    Shaw AD; Muthukumaraswamy SD; Saxena N; Sumner RL; Adams NE; Moran RJ; Singh KD
    Neuroimage; 2020 Nov; 221():117189. PubMed ID: 32711064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAergic cortical network physiology in frontotemporal lobar degeneration.
    Adams NE; Hughes LE; Rouse MA; Phillips HN; Shaw AD; Murley AG; Cope TE; Bevan-Jones WR; Passamonti L; Street D; Holland N; Nesbitt D; Friston K; Rowe JB
    Brain; 2021 Aug; 144(7):2135-2145. PubMed ID: 33710299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronized gamma-frequency inhibition in neocortex depends on excitatory-inhibitory interactions but not electrical synapses.
    Neske GT; Connors BW
    J Neurophysiol; 2016 Aug; 116(2):351-68. PubMed ID: 27121576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH
    Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of elevated endogenous GABA levels on movement-related network oscillations.
    Muthukumaraswamy SD; Myers JF; Wilson SJ; Nutt DJ; Lingford-Hughes A; Singh KD; Hamandi K
    Neuroimage; 2013 Feb; 66():36-41. PubMed ID: 23110884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak visual gamma frequency is modified across the healthy menstrual cycle.
    Sumner RL; McMillan RL; Shaw AD; Singh KD; Sundram F; Muthukumaraswamy SD
    Hum Brain Mapp; 2018 Aug; 39(8):3187-3202. PubMed ID: 29665216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus-induced gamma power predicts the amplitude of the subsequent visual evoked response.
    van Es MWJ; Schoffelen JM
    Neuroimage; 2019 Feb; 186():703-712. PubMed ID: 30468771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory nature of tiagabine-augmented GABAA receptor-mediated depolarizing responses in hippocampal pyramidal cells.
    Jackson MF; Esplin B; Capek R
    J Neurophysiol; 1999 Mar; 81(3):1192-8. PubMed ID: 10085346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cerebrospinal fluid promotes spontaneous gamma oscillations in the hippocampus in vitro.
    Bjorefeldt A; Roshan F; Forsberg M; Zetterberg H; Hanse E; Fisahn A
    Hippocampus; 2020 Feb; 30(2):101-113. PubMed ID: 31313871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex.
    Xiang Z; Huguenard JR; Prince DA
    J Physiol; 1998 Feb; 506 ( Pt 3)(Pt 3):715-30. PubMed ID: 9503333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurochemistry-enriched dynamic causal models of magnetoencephalography, using magnetic resonance spectroscopy.
    Jafarian A; Hughes LE; Adams NE; Lanskey JH; Naessens M; Rouse MA; Murley AG; Friston KJ; Rowe JB
    Neuroimage; 2023 Aug; 276():120193. PubMed ID: 37244323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect.
    Wallenstein GV; Hasselmo ME
    J Neurophysiol; 1997 Jul; 78(1):393-408. PubMed ID: 9242288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance.
    Herring JD; Esterer S; Marshall TR; Jensen O; Bergmann TO
    Neuroimage; 2019 Jan; 184():440-449. PubMed ID: 30243972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.