These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 28808104)
1. Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity. Gollan PJ; Lima-Melo Y; Tiwari A; Tikkanen M; Aro EM Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808104 [TBL] [Abstract][Full Text] [Related]
2. Consequences of photosystem-I damage and repair on photosynthesis and carbon use in Arabidopsis thaliana. Lima-Melo Y; Gollan PJ; Tikkanen M; Silveira JAG; Aro EM Plant J; 2019 Mar; 97(6):1061-1072. PubMed ID: 30488561 [TBL] [Abstract][Full Text] [Related]
3. PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under Fluctuating Light at Donor and Acceptor Sides. Yamamoto H; Shikanai T Plant Physiol; 2019 Feb; 179(2):588-600. PubMed ID: 30464024 [TBL] [Abstract][Full Text] [Related]
4. Roles of the cyclic electron flow around PSI (CEF-PSI) and O₂-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Kono M; Noguchi K; Terashima I Plant Cell Physiol; 2014 May; 55(5):990-1004. PubMed ID: 24553846 [TBL] [Abstract][Full Text] [Related]
5. PGR5-dependent cyclic electron transport around PSI contributes to the redox homeostasis in chloroplasts rather than CO(2) fixation and biomass production in rice. Nishikawa Y; Yamamoto H; Okegawa Y; Wada S; Sato N; Taira Y; Sugimoto K; Makino A; Shikanai T Plant Cell Physiol; 2012 Dec; 53(12):2117-26. PubMed ID: 23161858 [TBL] [Abstract][Full Text] [Related]
6. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Tikkanen M; Mekala NR; Aro EM Biochim Biophys Acta; 2014 Jan; 1837(1):210-5. PubMed ID: 24161359 [TBL] [Abstract][Full Text] [Related]
7. A balanced PGR5 level is required for chloroplast development and optimum operation of cyclic electron transport around photosystem I. Okegawa Y; Long TA; Iwano M; Takayama S; Kobayashi Y; Covert SF; Shikanai T Plant Cell Physiol; 2007 Oct; 48(10):1462-71. PubMed ID: 17913767 [TBL] [Abstract][Full Text] [Related]
8. Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth. Yamori W; Shikanai T Annu Rev Plant Biol; 2016 Apr; 67():81-106. PubMed ID: 26927905 [TBL] [Abstract][Full Text] [Related]
9. Characterization of factors affecting the activity of photosystem I cyclic electron transport in chloroplasts. Okegawa Y; Kagawa Y; Kobayashi Y; Shikanai T Plant Cell Physiol; 2008 May; 49(5):825-34. PubMed ID: 18388110 [TBL] [Abstract][Full Text] [Related]
10. Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Courteille A; Vesa S; Sanz-Barrio R; Cazalé AC; Becuwe-Linka N; Farran I; Havaux M; Rey P; Rumeau D Plant Physiol; 2013 Jan; 161(1):508-20. PubMed ID: 23151348 [TBL] [Abstract][Full Text] [Related]
11. Global transcriptome analyses provide evidence that chloroplast redox state contributes to intracellular as well as long-distance signalling in response to stress and acclimation in Arabidopsis. Bode R; Ivanov AG; Hüner NP Photosynth Res; 2016 Jun; 128(3):287-312. PubMed ID: 27021769 [TBL] [Abstract][Full Text] [Related]
12. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts. Shikanai T; Yamamoto H Mol Plant; 2017 Jan; 10(1):20-29. PubMed ID: 27575692 [TBL] [Abstract][Full Text] [Related]
13. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Naranjo B; Mignée C; Krieger-Liszkay A; Hornero-Méndez D; Gallardo-Guerrero L; Cejudo FJ; Lindahl M Plant Cell Environ; 2016 Apr; 39(4):804-22. PubMed ID: 26476233 [TBL] [Abstract][Full Text] [Related]
14. PROTON GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I. Takagi D; Miyake C Physiol Plant; 2018 Nov; 164(3):337-348. PubMed ID: 29604096 [TBL] [Abstract][Full Text] [Related]
15. Cyclic electron transport around photosystem I: genetic approaches. Shikanai T Annu Rev Plant Biol; 2007; 58():199-217. PubMed ID: 17201689 [TBL] [Abstract][Full Text] [Related]
16. Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Shikanai T Curr Opin Biotechnol; 2014 Apr; 26():25-30. PubMed ID: 24679254 [TBL] [Abstract][Full Text] [Related]
17. Contribution of NDH-dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5. Nakano H; Yamamoto H; Shikanai T Biochim Biophys Acta Bioenerg; 2019 May; 1860(5):369-374. PubMed ID: 30878346 [TBL] [Abstract][Full Text] [Related]
18. Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Ihnatowicz A; Pesaresi P; Varotto C; Richly E; Schneider A; Jahns P; Salamini F; Leister D Plant J; 2004 Mar; 37(6):839-52. PubMed ID: 14996217 [TBL] [Abstract][Full Text] [Related]
19. A deficiency in chloroplastic ferredoxin 2 facilitates effective photosynthetic capacity during long-term high light acclimation in Arabidopsis thaliana. Liu J; Wang P; Liu B; Feng D; Zhang J; Su J; Zhang Y; Wang JF; Wang HB Plant J; 2013 Dec; 76(5):861-74. PubMed ID: 24118453 [TBL] [Abstract][Full Text] [Related]
20. Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. Chen KM; Holmström M; Raksajit W; Suorsa M; Piippo M; Aro EM BMC Plant Biol; 2010 Mar; 10():43. PubMed ID: 20205940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]