These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 28808125)
1. Insights into substrate promiscuity of human seryl-tRNA synthetase. Holman KM; Puppala AK; Lee JW; Lee H; Simonović M RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125 [TBL] [Abstract][Full Text] [Related]
2. The long extra arms of human tRNA((Ser)Sec) and tRNA(Ser) function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner. Wu XQ; Gross HJ Nucleic Acids Res; 1993 Dec; 21(24):5589-94. PubMed ID: 8284203 [TBL] [Abstract][Full Text] [Related]
3. Designing seryl-tRNA synthetase for improved serylation of selenocysteine tRNAs. Fu X; Crnković A; Sevostyanova A; Söll D FEBS Lett; 2018 Nov; 592(22):3759-3768. PubMed ID: 30317559 [TBL] [Abstract][Full Text] [Related]
4. Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure. Heckl M; Busch K; Gross HJ FEBS Lett; 1998 May; 427(3):315-9. PubMed ID: 9637248 [TBL] [Abstract][Full Text] [Related]
5. SerRS-tRNASec complex structures reveal mechanism of the first step in selenocysteine biosynthesis. Wang C; Guo Y; Tian Q; Jia Q; Gao Y; Zhang Q; Zhou C; Xie W Nucleic Acids Res; 2015 Dec; 43(21):10534-45. PubMed ID: 26433229 [TBL] [Abstract][Full Text] [Related]
6. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm. Ohama T; Yang DC; Hatfield DL Arch Biochem Biophys; 1994 Dec; 315(2):293-301. PubMed ID: 7986071 [TBL] [Abstract][Full Text] [Related]
15. Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation. Vincent C; Borel F; Willison JC; Leberman R; Härtlein M Nucleic Acids Res; 1995 Apr; 23(7):1113-8. PubMed ID: 7537870 [TBL] [Abstract][Full Text] [Related]
16. Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser). Baron C; Westhof E; Böck A; Giegé R J Mol Biol; 1993 May; 231(2):274-92. PubMed ID: 8510147 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine. Chiba S; Itoh Y; Sekine S; Yokoyama S Mol Cell; 2010 Aug; 39(3):410-20. PubMed ID: 20705242 [TBL] [Abstract][Full Text] [Related]
18. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex. Förster C; Brauer AB; Fürste JP; Betzel Ch; Weber M; Cordes F; Erdmann VA Biochem Biophys Res Commun; 2007 Oct; 362(2):415-8. PubMed ID: 17719008 [TBL] [Abstract][Full Text] [Related]
19. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity. Borel F; Vincent C; Leberman R; Härtlein M Nucleic Acids Res; 1994 Aug; 22(15):2963-9. PubMed ID: 8065908 [TBL] [Abstract][Full Text] [Related]
20. Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea. Gruic-Sovulj I; Jaric J; Dulic M; Cindric M; Weygand-Durasevic I J Mol Biol; 2006 Aug; 361(1):128-39. PubMed ID: 16822522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]