These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28808235)

  • 1. Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures.
    Li VC; Dunn CK; Zhang Z; Deng Y; Qi HJ
    Sci Rep; 2017 Aug; 7(1):8018. PubMed ID: 28808235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Thermal Insulating Polyimide/Cellulose Nanocrystal Composite Aerogels with Low Dimensional Shrinkage.
    Feng C; Yu SS
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant-Mediated Highly Conductive Cellulosic Inks for High-Resolution 3D Printing of Robust and Structured Electromagnetic Interference Shielding Aerogels.
    Amini M; Hosseini H; Dutta S; Wuttke S; Kamkar M; Arjmand M
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54753-54765. PubMed ID: 37787508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking.
    Vadillo J; Larraza I; Calvo-Correas T; Martin L; Derail C; Eceiza A
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile Direct Writing of Aerogel-Based Sol-Gel Inks.
    Yang J; Wang H; Zhou B; Shen J; Zhang Z; Du A
    Langmuir; 2021 Feb; 37(6):2129-2139. PubMed ID: 33502207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds.
    Osorio DA; Lee BEJ; Kwiecien JM; Wang X; Shahid I; Hurley AL; Cranston ED; Grandfield K
    Acta Biomater; 2019 Mar; 87():152-165. PubMed ID: 30710708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels.
    Baniasadi H; Ajdary R; Trifol J; Rojas OJ; Seppälä J
    Carbohydr Polym; 2021 Aug; 266():118114. PubMed ID: 34044931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure.
    Karamat-Ullah N; Demidov Y; Schramm M; Grumme D; Auer J; Bohr C; Brachvogel B; Maleki H
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4545-4556. PubMed ID: 34415718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications.
    Koh JJ; Lim GJH; Zhou X; Zhang X; Ding J; He C
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13787-13795. PubMed ID: 30884229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping 3D Printability of Ionically Cross-Linked Cellulose Nanocrystal Inks: Architecting from Nano- to Macroscale Structures.
    Amini M; Kamkar M; Ahmadijokani F; Ghaderi S; Rojas OJ; Hosseini H; Arjmand M
    Biomacromolecules; 2023 Feb; 24(2):775-788. PubMed ID: 36546647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose Nanocrystal Gels with Tunable Mechanical Properties from Hybrid Thermal Strategies.
    Li Z; Soto MA; Drummond JG; Martinez DM; Hamad WY; MacLachlan MJ
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8406-8414. PubMed ID: 36719931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.
    Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Printed MoS
    Chandrasekaran S; Feaster J; Ynzunza J; Li F; Wang X; Nelson AJ; Worsley MA
    ACS Mater Au; 2022 Sep; 2(5):596-601. PubMed ID: 36855624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Ink Writing: A 3D Printing Technology for Diverse Materials.
    Saadi MASR; Maguire A; Pottackal NT; Thakur MSH; Ikram MM; Hart AJ; Ajayan PM; Rahman MM
    Adv Mater; 2022 Jul; 34(28):e2108855. PubMed ID: 35246886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical biomaterials via photopatterning-enhanced direct ink writing.
    Guzzi EA; Bischof R; Dranseikiene D; Deshmukh DV; Wahlsten A; Bovone G; Bernhard S; Tibbitt MW
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34433148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform.
    Imani KBC; Jo A; Choi GM; Kim B; Chung JW; Lee HS; Yoon J
    Macromol Rapid Commun; 2022 Jan; 43(2):e2100579. PubMed ID: 34708464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering.
    Iglesias-Mejuto A; García-González CA
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Freeze-Drying Processes on the Acoustic Absorption Performance of Sustainable Cellulose Nanocrystal Aerogels.
    Ruan JQ; Xie KY; Wan JN; Chen QY; Zuo X; Li X; Wu X; Fei C; Yao S
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Utilization of UiO-66-NH
    Chen Z; Wu Y; Tan X; Meng J; Cen J; Liu M
    Se Pu; 2022 Jun; 40(6):556-564. PubMed ID: 35616201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.