These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28808235)

  • 21. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pickering emulgels reinforced with host-guest supramolecular inclusion complexes for high fidelity direct ink writing.
    Pang B; Ajdary R; Antonietti M; Rojas O; Filonenko S
    Mater Horiz; 2022 Feb; 9(2):835-840. PubMed ID: 34985072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in Aerogels Formulations for Pulmonary Targeted Delivery of Therapeutic Agents: Safety, Efficacy and Regulatory Aspects.
    Verma S; Sharma PK; Malviya R; Das S
    Curr Pharm Biotechnol; 2024; 25(15):1939-1951. PubMed ID: 38251702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents.
    Zhou L; Ramezani H; Sun M; Xie M; Nie J; Lv S; Cai J; Fu J; He Y
    Biomater Sci; 2020 Sep; 8(18):5020-5028. PubMed ID: 32844842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionalized Cellulose Nanocrystals as Active Reinforcements for Light-Actuated 3D-Printed Structures.
    Müller LAE; Zingg A; Arcifa A; Zimmermann T; Nyström G; Burgert I; Siqueira G
    ACS Nano; 2022 Nov; 16(11):18210-18222. PubMed ID: 36256903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels.
    Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J
    Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing.
    Huan S; Ajdary R; Bai L; Klar V; Rojas OJ
    Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
    Yuk H; Zhao X
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lignin-Based Direct Ink Printed Structural Scaffolds.
    Jiang B; Yao Y; Liang Z; Gao J; Chen G; Xia Q; Mi R; Jiao M; Wang X; Hu L
    Small; 2020 Aug; 16(31):e1907212. PubMed ID: 32597027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-Material Direct Ink Writing (DIW) for Complex 3D Metallic Structures with Removable Supports.
    Xu C; Quinn B; Lebel LL; Therriault D; L'Espérance G
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8499-8506. PubMed ID: 30689948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks.
    Wang L; Feng J; Luo Y; Zhou Z; Jiang Y; Luo X; Xu L; Li L; Feng J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40964-40975. PubMed ID: 34424660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering.
    N'Gatta KM; Belaid H; El Hayek J; Assanvo EF; Kajdan M; Masquelez N; Boa D; Cavaillès V; Bechelany M; Salameh C
    Sci Rep; 2022 Dec; 12(1):21244. PubMed ID: 36482172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Post-modification of Cellulose Nanocrystal Aerogels with Thiol-Ene Click Chemistry.
    Aalbers GJW; Boott CE; D'Acierno F; Lewis L; Ho J; Michal CA; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2019 Jul; 20(7):2779-2785. PubMed ID: 31244013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and Characterization of Cellulose Nanofiber Aerogels Prepared via Two Different Drying Techniques.
    Wang Z; Zhu W; Huang R; Zhang Y; Jia C; Zhao H; Chen W; Xue Y
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33153103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chitin nanocrystals assisted 3D printing of polycitrate thermoset bioelastomers.
    Gu S; Tian Y; Liang K; Ji Y
    Carbohydr Polym; 2021 Mar; 256():117549. PubMed ID: 33483056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of Cellulose Nanocrystal-g-Poly(Acrylic Acid-Co-Acrylamide) Aerogels for Efficient Pb(II) Removal.
    Chen Y; Li Q; Li Y; Zhang Q; Huang J; Wu Q; Wang S
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32033311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography.
    Palaganas NB; Mangadlao JD; de Leon ACC; Palaganas JO; Pangilinan KD; Lee YJ; Advincula RC
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34314-34324. PubMed ID: 28876895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Printing of Graphene Aerogels.
    Zhang Q; Zhang F; Medarametla SP; Li H; Zhou C; Lin D
    Small; 2016 Apr; 12(13):1702-8. PubMed ID: 26861680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Assembled Behavior of Ultralightweight Aerogel from a Mixture of CNC/CNF from Oil Palm Empty Fruit Bunches.
    Burhani D; Septevani AA; Setiawan R; Djannah LM; Putra MA; Kusumah SS; Sondari D
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.