These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28808261)

  • 1. Atomic Force Microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei.
    Lherbette M; Dos Santos Á; Hari-Gupta Y; Fili N; Toseland CP; Schaap IAT
    Sci Rep; 2017 Aug; 7(1):8116. PubMed ID: 28808261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental techniques for study of chromatin mechanics in intact nuclei and living cells.
    Verstraeten VL; Lammerding J
    Chromosome Res; 2008; 16(3):499-510. PubMed ID: 18461486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures.
    Dahl KN; Engler AJ; Pajerowski JD; Discher DE
    Biophys J; 2005 Oct; 89(4):2855-64. PubMed ID: 16055543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics.
    Hobson CM; Kern M; O'Brien ET; Stephens AD; Falvo MR; Superfine R
    Mol Biol Cell; 2020 Jul; 31(16):1788-1801. PubMed ID: 32267206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical properties of enucleated cells: contribution of the nucleus to the passive cell mechanics.
    Efremov YM; Kotova SL; Akovantseva AA; Timashev PS
    J Nanobiotechnology; 2020 Sep; 18(1):134. PubMed ID: 32943055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus.
    Guilluy C; Osborne LD; Van Landeghem L; Sharek L; Superfine R; Garcia-Mata R; Burridge K
    Nat Cell Biol; 2014 Apr; 16(4):376-81. PubMed ID: 24609268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.
    Coceano G; Yousafzai MS; Ma W; Ndoye F; Venturelli L; Hussain I; Bonin S; Niemela J; Scoles G; Cojoc D; Ferrari E
    Nanotechnology; 2016 Feb; 27(6):065102. PubMed ID: 26683826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular manipulation of chromatin using magnetic nanoparticles.
    Kanger JS; Subramaniam V; van Driel R
    Chromosome Res; 2008; 16(3):511-22. PubMed ID: 18461487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microrheology of human lung epithelial cells measured by atomic force microscopy.
    Alcaraz J; Buscemi L; Grabulosa M; Trepat X; Fabry B; Farré R; Navajas D
    Biophys J; 2003 Mar; 84(3):2071-9. PubMed ID: 12609908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AFM imaging of the transcriptionally active chromatin in mammalian cells' nuclei.
    Bairamukov VY; Filatov MV; Kovalev RA; Fedorova ND; Pantina RA; Ankudinov AV; Iashina EG; Grigoriev SV; Varfolomeeva EY
    Biochim Biophys Acta Gen Subj; 2022 Dec; 1866(12):130234. PubMed ID: 36007722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capturing the elasticity and morphology of live fibroblast cell cultures during degradation with atomic force microscopy.
    Aifantis KE; Shrivastava S; Pelidou SH
    J Microsc; 2013 Jan; 249(1):62-8. PubMed ID: 23116192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy for the examination of single cell rheology.
    Okajima T
    Curr Pharm Biotechnol; 2012 Nov; 13(14):2623-31. PubMed ID: 22039813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chromatin structure of well-spread demembranated human sperm nuclei revealed by atomic force microscopy.
    Allen MJ; Bradbury EM; Balhorn R
    Scanning Microsc; 1996; 10(4):989-94; discussion 994-6. PubMed ID: 9854851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.
    Nalam PC; Gosvami NN; Caporizzo MA; Composto RJ; Carpick RW
    Soft Matter; 2015 Nov; 11(41):8165-78. PubMed ID: 26337502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered mechanical properties of the nucleus in disease.
    Lombardi ML; Lammerding J
    Methods Cell Biol; 2010; 98():121-41. PubMed ID: 20816233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage.
    Nava MM; Miroshnikova YA; Biggs LC; Whitefield DB; Metge F; Boucas J; Vihinen H; Jokitalo E; Li X; García Arcos JM; Hoffmann B; Merkel R; Niessen CM; Dahl KN; Wickström SA
    Cell; 2020 May; 181(4):800-817.e22. PubMed ID: 32302590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization.
    Keeling MC; Flores LR; Dodhy AH; Murray ER; Gavara N
    Sci Rep; 2017 Jul; 7(1):5219. PubMed ID: 28701767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ mechanical characterization of the cell nucleus by atomic force microscopy.
    Liu H; Wen J; Xiao Y; Liu J; Hopyan S; Radisic M; Simmons CA; Sun Y
    ACS Nano; 2014 Apr; 8(4):3821-8. PubMed ID: 24673613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local rheology of human neutrophils investigated using atomic force microscopy.
    Lee YJ; Patel D; Park S
    Int J Biol Sci; 2011 Jan; 7(1):102-11. PubMed ID: 21278920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-limited compartmentalization of mammalian cell nuclei assessed by microinjected macromolecules.
    Görisch SM; Richter K; Scheuermann MO; Herrmann H; Lichter P
    Exp Cell Res; 2003 Oct; 289(2):282-94. PubMed ID: 14499629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.