These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 28808350)

  • 1. Fano resonance Rabi splitting of surface plasmons.
    Liu Z; Li J; Liu Z; Li W; Li J; Gu C; Li ZY
    Sci Rep; 2017 Aug; 7(1):8010. PubMed ID: 28808350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano Lineshapes and Rabi Splittings: Can They Be Artificially Generated or Obscured by the Numerical Aperture?
    Geng Z; Theenhaus J; Patra BK; Zheng JY; Busink J; Garnett EC; Rodriguez SRK
    ACS Photonics; 2021 May; 8(5):1271-1276. PubMed ID: 34056036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong coupling of emitters to single plasmonic nanoparticles: exciton-induced transparency and Rabi splitting.
    Pelton M; Storm SD; Leng H
    Nanoscale; 2019 Aug; 11(31):14540-14552. PubMed ID: 31364684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS
    Wang M; Krasnok A; Zhang T; Scarabelli L; Liu H; Wu Z; Liz-Marzán LM; Terrones M; Alù A; Zheng Y
    Adv Mater; 2018 May; 30(22):e1705779. PubMed ID: 29659088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning Hybrid exciton-Photon Fano Resonances in Two-Dimensional Organic-Inorganic Perovskite Thin Films.
    Muckel F; Guye KN; Gallagher SM; Liu Y; Ginger DS
    Nano Lett; 2021 Jul; 21(14):6124-6131. PubMed ID: 34269589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic plasmonic Fano resonance at optical frequency.
    Bao Y; Hu Z; Li Z; Zhu X; Fang Z
    Small; 2015 May; 11(18):2177-81. PubMed ID: 25594885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons.
    Leng H; Szychowski B; Daniel MC; Pelton M
    Nat Commun; 2018 Oct; 9(1):4012. PubMed ID: 30275446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes.
    Lin L; Wang M; Wei X; Peng X; Xie C; Zheng Y
    Nano Lett; 2016 Dec; 16(12):7655-7663. PubMed ID: 27960522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The vibronic absorption spectra and exciton dynamics of plasmon-exciton hybrid systems in the regimes ranged from Fano antiresonance to Rabi-like splitting.
    Zhang B; Liang W
    J Chem Phys; 2020 Jan; 152(1):014102. PubMed ID: 31914739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond Conventional Sensing: Hybrid Plasmonic Metasurfaces and Bound States in the Continuum.
    Bosomtwi D; Babicheva VE
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals.
    Wen J; Wang H; Wang W; Deng Z; Zhuang C; Zhang Y; Liu F; She J; Chen J; Chen H; Deng S; Xu N
    Nano Lett; 2017 Aug; 17(8):4689-4697. PubMed ID: 28665614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano asymmetry in zero-detuned exciton-plasmon systems.
    Nodar Á; Neuman T; Zhang Y; Aizpurua J; Esteban R
    Opt Express; 2023 Mar; 31(6):10297-10319. PubMed ID: 37157580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fano-like chiroptical response in plasmonic heterodimer nanostructures.
    Tian X; Sun S; Leong ESP; Zhu G; Teng J; Zhang B; Fang Y; Ni W; Zhang CY
    Phys Chem Chem Phys; 2020 Feb; 22(6):3604-3610. PubMed ID: 31995069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dark-Exciton-Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS
    Wang M; Wu Z; Krasnok A; Zhang T; Liu M; Liu H; Scarabelli L; Fang J; Liz-Marzán LM; Terrones M; Alù A; Zheng Y
    Small; 2019 Aug; 15(31):e1900982. PubMed ID: 31183956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating dynamical Rabi-splitting with two-color laser pulses.
    Agueny H; Taoutioui A; Adnani Y; Makhoute A
    Opt Express; 2019 Jul; 27(15):21020-21028. PubMed ID: 31510187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evidence of Fano resonances in nanomechanical resonators.
    Stassi S; Chiadò A; Calafiore G; Palmara G; Cabrini S; Ricciardi C
    Sci Rep; 2017 Apr; 7(1):1065. PubMed ID: 28432315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide.
    Zhan S; Peng Y; He Z; Li B; Chen Z; Xu H; Li H
    Sci Rep; 2016 Mar; 6():22428. PubMed ID: 26932299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Plasmonic Immunoassay Sensing.
    Kongsuwan N; Xiong X; Bai P; You JB; Png CE; Wu L; Hess O
    Nano Lett; 2019 Sep; 19(9):5853-5861. PubMed ID: 31356753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators.
    Ren XB; Ren K; Zhang Y; Ming CG; Han Q
    Beilstein J Nanotechnol; 2019; 10():2459-2467. PubMed ID: 31921524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.