These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28808724)

  • 1. Water and CO (co-)adsorption on pseudomorphic Pt films on Ru(0001) - a low-temperature scanning tunneling microscopy study.
    Schilling M; Brimaud S; Behm RJ
    Phys Chem Chem Phys; 2017 Aug; 19(33):22434-22443. PubMed ID: 28808724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From adlayer islands to surface alloy: structural and chemical changes on bimetallic PtRu/Ru(0001) surfaces.
    Diemant T; Bergbreiter A; Bansmann J; Hoster HE; Behm RJ
    Chemphyschem; 2010 Oct; 11(14):3123-32. PubMed ID: 20715276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically-defined model catalysts in ultrahigh vacuum and in liquid electrolytes: particle size-dependent CO adsorption on Pt nanoparticles on ordered Co
    Faisal F; Stumm C; Bertram M; Wähler T; Schuster R; Xiang F; Lytken O; Katsounaros I; Mayrhofer KJJ; Schneider MA; Brummel O; Libuda J
    Phys Chem Chem Phys; 2018 Sep; 20(36):23702-23716. PubMed ID: 30191927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of CO and deuterium with bimetallic, monolayer Pt-island/film covered Ru(0001) surfaces.
    Hartmann H; Diemant T; Bansmann J; Behm RJ
    Phys Chem Chem Phys; 2012 Aug; 14(31):10919-34. PubMed ID: 22777130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon monoxide adsorption on Ru-modified Pt surfaces: time-resolved infrared reflection absorption studies in ultrahigh vacuum.
    Yee N; Chottiner GS; Scherson DA
    J Phys Chem B; 2005 Mar; 109(12):5707-12. PubMed ID: 16851617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coadsorption of hydrogen and CO on hydrogen pre-covered PtRu/Ru(0001) surface alloys.
    Diemant T; Bansmann J; Rauscher H
    Chemphyschem; 2010 May; 11(7):1482-90. PubMed ID: 20043310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetically limited CO adsorption: spill-over as a highly effective adsorption pathway on bimetallic surfaces.
    Hartmann H; Diemant T; Behm RJ
    Chemphyschem; 2013 Nov; 14(16):3801-5. PubMed ID: 24039117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanol reactions on bimetallic Ru(0001)-based surfaces under UHV conditions.
    Gazdzicki P; Jakob P
    Phys Chem Chem Phys; 2013 Feb; 15(5):1460-70. PubMed ID: 23247830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coadsorption of hydrogen and CO on well-defined Pt(35)Ru(65)/Ru(0001) surface alloys--site specificity vs. adsorbate-adsorbate interactions.
    Diemant T; Rauscher H; Bansmann J; Behm RJ
    Phys Chem Chem Phys; 2010 Sep; 12(33):9801-10. PubMed ID: 20544100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of PtRu clusters on Ru(0001)-supported monolayer graphene films.
    Engstfeld AK; Beckord S; Lorenz CD; Behm RJ
    Chemphyschem; 2012 Oct; 13(14):3313-9. PubMed ID: 22807407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and electrochemical behavior of PtRu(111) alloy single-crystal surfaces.
    El-Aziz AM; Hoyer R; Kibler LA
    Chemphyschem; 2010 Sep; 11(13):2906-11. PubMed ID: 20665619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PtRu nanofilm formation by electrochemical atomic layer deposition (E-ALD).
    Jayaraju N; Banga D; Thambidurai C; Liang X; Kim YG; Stickney JL
    Langmuir; 2014 Mar; 30(11):3254-63. PubMed ID: 24568151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability, electronic properties and CO adsorption properties of bimetallic PtAg/Pt(111) surfaces.
    Mancera LA; Groß A; Behm RJ
    Phys Chem Chem Phys; 2024 Jul; 26(26):18435-18448. PubMed ID: 38916054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-adsorption of CO onto a Ag-modified Pt(111)--restructuring of a Ag UPD layer monitored by EC-STM.
    Domke KF; Xiao XY; Baltruschat H
    Phys Chem Chem Phys; 2008 Mar; 10(11):1555-61. PubMed ID: 18327311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy.
    Vang RT; Laegsgaard E; Besenbacher F
    Phys Chem Chem Phys; 2007 Jul; 9(27):3460-9. PubMed ID: 17612714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Does Water Wet a Surface?
    Maier S; Salmeron M
    Acc Chem Res; 2015 Oct; 48(10):2783-90. PubMed ID: 26418288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined UHV-STM-flow cell set-up for electrochemical/electrocatalytic studies of structurally well-defined UHV prepared model electrodes.
    Schnaidt J; Beckord S; Engstfeld AK; Klein J; Brimaud S; Behm RJ
    Phys Chem Chem Phys; 2017 Feb; 19(6):4166-4178. PubMed ID: 27777999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential-induced surface restructuring--the need for structural characterization in electrocatalysis research.
    Engstfeld AK; Brimaud S; Behm RJ
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12936-40. PubMed ID: 25303109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pt(x)Ru(1-x)/Ru(0001) surface alloys-formation and atom distribution.
    Hoster HE; Bergbreiter A; Erne PM; Hager T; Rauscher H; Behm RJ
    Phys Chem Chem Phys; 2008 Jul; 10(25):3812-23. PubMed ID: 18563242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface chemistry on bimetallic alloy surfaces: adsorption of anions and oxidation of CO on Pt3Sn(111).
    Stamenković VR; Arenz M; Lucas CA; Gallagher ME; Ross PN; Marković NM
    J Am Chem Soc; 2003 Mar; 125(9):2736-45. PubMed ID: 12603163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.