BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28808796)

  • 1. Structural alteration of the endothelial glycocalyx: contribution of the actin cytoskeleton.
    Li W; Wang W
    Biomech Model Mechanobiol; 2018 Feb; 17(1):147-158. PubMed ID: 28808796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane tension regulates syndecan-1 expression through actin remodelling.
    Li W; Wang W
    Biochim Biophys Acta Gen Subj; 2019 Nov; 1863(11):129413. PubMed ID: 31401177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid shear stress-dependent ENaC membrane insertion is mediated by the endothelial glycocalyx and the mineralocorticoid receptor.
    Cosgun ZC; Sternak M; Fels B; Bar A; Kwiatkowski G; Pacia MZ; Herrnböck L; Lindemann M; Stegbauer J; Höges S; Chlopicki S; Kusche-Vihrog K
    Cell Mol Life Sci; 2022 Apr; 79(5):235. PubMed ID: 35397686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro.
    Bai K; Wang W
    J R Soc Interface; 2012 Sep; 9(74):2290-8. PubMed ID: 22417911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a "bumper-car" model.
    Thi MM; Tarbell JM; Weinbaum S; Spray DC
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16483-8. PubMed ID: 15545600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress.
    Schnittler HJ; Schneider SW; Raifer H; Luo F; Dieterich P; Just I; Aktories K
    Pflugers Arch; 2001 Aug; 442(5):675-87. PubMed ID: 11512023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear stress-induced redistribution of the glycocalyx on endothelial cells in vitro.
    Bai K; Wang W
    Biomech Model Mechanobiol; 2014 Apr; 13(2):303-11. PubMed ID: 23715899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of Endothelial Receptor Arrays by a Polarized Spectrin Cytoskeleton Facilitates Rolling and Adhesion of Leukocytes.
    Mylvaganam S; Riedl M; Vega A; Collins RF; Jaqaman K; Grinstein S; Freeman SA
    Cell Rep; 2020 Jun; 31(12):107798. PubMed ID: 32579925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statin therapy influences endothelial cell morphology and F-actin cytoskeleton structure when exposed to static and laminar shear stress conditions.
    Dick M; Jonak P; Leask RL
    Life Sci; 2013 May; 92(14-16):859-65. PubMed ID: 23517776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear Stress Regulation of Endothelial Glycocalyx Structure Is Determined by Glucobiosynthesis.
    Wang G; Kostidis S; Tiemeier GL; Sol WMPJ; de Vries MR; Giera M; Carmeliet P; van den Berg BM; Rabelink TJ
    Arterioscler Thromb Vasc Biol; 2020 Feb; 40(2):350-364. PubMed ID: 31826652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow.
    Satcher R; Dewey CF; Hartwig JH
    Microcirculation; 1997 Dec; 4(4):439-53. PubMed ID: 9431512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress.
    Osborn EA; Rabodzey A; Dewey CF; Hartwig JH
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C444-52. PubMed ID: 16176968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear stress-mediated changes in the expression of complement regulatory protein CD59 on human endothelial progenitor cells by ECM-integrinα
    Cui X; Zhang X; Bu H; Liu N; Li H; Guan X; Yan H; Wang Y; Zhang H; Ding Y; Cheng M
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):416-421. PubMed ID: 28943429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved in vitro model for studying the structural and functional properties of the endothelial glycocalyx in arteries, capillaries and veins.
    Siren EMJ; Luo HD; Bajaj S; MacKenzie J; Daneshi M; Martinez DM; Conway EM; Cheung KC; Kizhakkedathu JN
    FASEB J; 2021 Jun; 35(6):e21643. PubMed ID: 33977574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin cytoskeletal rearrangement and dysfunction due to activation of the receptor for advanced glycation end products is inhibited by thymosin beta 4.
    Kim S; Kwon J
    J Physiol; 2015 Apr; 593(8):1873-86. PubMed ID: 25640761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress.
    Zeng Y; Tarbell JM
    PLoS One; 2014; 9(1):e86249. PubMed ID: 24465988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction.
    Zeng Y; Zhang XF; Fu BM; Tarbell JM
    Adv Exp Med Biol; 2018; 1097():1-27. PubMed ID: 30315537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The endothelial glycocalyx: a mechano-sensor and -transducer.
    Tarbell JM; Ebong EE
    Sci Signal; 2008 Oct; 1(40):pt8. PubMed ID: 18840877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human endothelial cells in high glucose: New clues from culture in 3D microfluidic chips.
    Locatelli L; Inglebert M; Scrimieri R; Sinha PK; Zuccotti GV; Milani P; Bureau L; Misbah C; Maier JAM
    FASEB J; 2022 Feb; 36(2):e22137. PubMed ID: 35066939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear-induced force transmission in a multicomponent, multicell model of the endothelium.
    Dabagh M; Jalali P; Butler PJ; Tarbell JM
    J R Soc Interface; 2014 Sep; 11(98):20140431. PubMed ID: 24966239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.