These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28808992)

  • 1. A Photoaffinity Labeling-Based Chemoproteomics Strategy for Unbiased Target Deconvolution of Small Molecule Drug Candidates.
    Thomas JR; Brittain SM; Lipps J; Llamas L; Jain RK; Schirle M
    Methods Mol Biol; 2017; 1647():1-18. PubMed ID: 28808992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target deconvolution from phenotype-based drug discovery by using chemical proteomics approaches.
    Kubota K; Funabashi M; Ogura Y
    Biochim Biophys Acta Proteins Proteom; 2019 Jan; 1867(1):22-27. PubMed ID: 30392561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoproteomics, A Broad Avenue to Target Deconvolution.
    Gao Y; Ma M; Li W; Lei X
    Adv Sci (Weinh); 2024 Feb; 11(8):e2305608. PubMed ID: 38095542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoaffinity labelling strategies for mapping the small molecule-protein interactome.
    Burton NR; Kim P; Backus KM
    Org Biomol Chem; 2021 Sep; 19(36):7792-7809. PubMed ID: 34549230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for clickable photoaffinity labeling and quantitative chemical proteomics.
    Lee W; Huang Z; Am Ende CW; Seneviratne U
    STAR Protoc; 2021 Jun; 2(2):100593. PubMed ID: 34169287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Specific Binding Proteins to Photoaffinity Linkers for Efficient Deconvolution of Target Protein.
    Park J; Koh M; Koo JY; Lee S; Park SB
    ACS Chem Biol; 2016 Jan; 11(1):44-52. PubMed ID: 26502221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An isotope-coded fluorogenic cross-linker for high-performance target identification based on photoaffinity labeling.
    Tomohiro T; Morimoto S; Shima T; Chiba J; Hatanaka Y
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13502-5. PubMed ID: 25382598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective fluorescence detection of small-molecule-binding proteins by using a dual photoaffinity labeling system.
    Sakurai K; Yamada R; Okada A; Tawa M; Ozawa S; Inoue M
    Chembiochem; 2013 Mar; 14(4):421-5. PubMed ID: 23371788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoaffinity labeling combined with mass spectrometric approaches as a tool for structural proteomics.
    Robinette D; Neamati N; Tomer KB; Borchers CH
    Expert Rev Proteomics; 2006 Aug; 3(4):399-408. PubMed ID: 16901199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners.
    Rowland MM; Bostic HE; Gong D; Speers AE; Lucas N; Cho W; Cravatt BF; Best MD
    Biochemistry; 2011 Dec; 50(51):11143-61. PubMed ID: 22074223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of General Anesthetic Target Protein-Binding Sites by Photoaffinity Labeling and Mass Spectrometry.
    Woll KA; Dailey WP; Eckenhoff RG
    Methods Enzymol; 2018; 602():231-246. PubMed ID: 29588031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Binding Site Hotspot Map of the FKBP12-Rapamycin-FRB Ternary Complex by Photoaffinity Labeling and Mass Spectrometry-Based Proteomics.
    Flaxman HA; Chang CF; Wu HY; Nakamoto CH; Woo CM
    J Am Chem Soc; 2019 Jul; 141(30):11759-11764. PubMed ID: 31309829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.
    Gao J; Mfuh A; Amako Y; Woo CM
    J Am Chem Soc; 2018 Mar; 140(12):4259-4268. PubMed ID: 29543447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in target characterization and identification by photoaffinity probes.
    Sumranjit J; Chung SJ
    Molecules; 2013 Aug; 18(9):10425-51. PubMed ID: 23994969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small Molecule Interactome Mapping by Photo-Affinity Labeling (SIM-PAL) to Identify Binding Sites of Small Molecules on a Proteome-Wide Scale.
    Flaxman HA; Miyamoto DK; Woo CM
    Curr Protoc Chem Biol; 2019 Dec; 11(4):e75. PubMed ID: 31763793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug Target Identification Using an iTRAQ-Based Quantitative Chemical Proteomics Approach-Based on a Target Profiling Study of Andrographolide.
    Wang J; Wong YK; Zhang J; Lee YM; Hua ZC; Shen HM; Lin Q
    Methods Enzymol; 2017; 586():291-309. PubMed ID: 28137568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The application of small molecule bioactive probes in the identification of cellular targets].
    Zhang J; Zhou HC
    Yao Xue Xue Bao; 2012 Mar; 47(3):299-306. PubMed ID: 22645752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoaffinity labeling approaches to elucidate lipid-protein interactions.
    Yu W; Baskin JM
    Curr Opin Chem Biol; 2022 Aug; 69():102173. PubMed ID: 35724595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the Small Molecule Interactome by Mass Spectrometry.
    Flaxman HA; Woo CM
    Biochemistry; 2018 Jan; 57(2):186-193. PubMed ID: 29083874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clickable gold-nanoparticles as generic probe precursors for facile photoaffinity labeling application.
    Mori K; Sakurai K
    Org Biomol Chem; 2021 Feb; 19(6):1268-1273. PubMed ID: 33331841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.