These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics. Wu CY; Lu JC; Liu MC; Tung YC Lab Chip; 2012 Oct; 12(20):3943-51. PubMed ID: 22842773 [TBL] [Abstract][Full Text] [Related]
3. An inkjet-printed electrowetting valve for paper-fluidic sensors. Koo CK; He F; Nugen SR Analyst; 2013 Sep; 138(17):4998-5004. PubMed ID: 23828822 [TBL] [Abstract][Full Text] [Related]
4. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Toley BJ; Wang JA; Gupta M; Buser JR; Lafleur LK; Lutz BR; Fu E; Yager P Lab Chip; 2015 Mar; 15(6):1432-44. PubMed ID: 25606810 [TBL] [Abstract][Full Text] [Related]
5. A hybrid paper and microfluidic chip with electrowetting valves and colorimetric detection. He F; Grimes J; Alcaine SD; Nugen SR Analyst; 2014 Jun; 139(12):3002-8. PubMed ID: 24719901 [TBL] [Abstract][Full Text] [Related]
7. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography. Devaraju NS; Unger MA Lab Chip; 2012 Nov; 12(22):4809-15. PubMed ID: 23000861 [TBL] [Abstract][Full Text] [Related]
8. Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics. Venzac B; Liu Y; Ferrante I; Vargas P; Yamada A; Courson R; Verhulsel M; Malaquin L; Viovy JL; Descroix S Microsyst Nanoeng; 2020; 6():18. PubMed ID: 34567633 [TBL] [Abstract][Full Text] [Related]
9. Open-channel microfluidics via resonant wireless power transfer. Ertsgaard CT; Yoo D; Christenson PR; Klemme DJ; Oh SH Nat Commun; 2022 Apr; 13(1):1869. PubMed ID: 35387995 [TBL] [Abstract][Full Text] [Related]
10. Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control. Chen X; Chen S; Zhang Y; Yang H Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32708757 [TBL] [Abstract][Full Text] [Related]
11. Reynolds shear stress for textile prosthetic heart valves in relation to fabric design. Bark DL; Yousefi A; Forleo M; Vaesken A; Heim F; Dasi LP J Mech Behav Biomed Mater; 2016 Jul; 60():280-287. PubMed ID: 26919564 [TBL] [Abstract][Full Text] [Related]
12. Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance. Wang X; Agasid MT; Baker CA; Aspinwall CA ACS Appl Mater Interfaces; 2019 Sep; 11(37):34463-34470. PubMed ID: 31496217 [TBL] [Abstract][Full Text] [Related]
13. Design and Fabrication of a Microfluidic Viscometer Based on Electrofluidic Circuits. Tzeng BB; Sun YS Micromachines (Basel); 2018 Jul; 9(8):. PubMed ID: 30424308 [TBL] [Abstract][Full Text] [Related]
14. Exploration of microfluidic devices based on multi-filament threads and textiles: A review. Nilghaz A; Ballerini DR; Shen W Biomicrofluidics; 2013 Sep; 7(5):51501. PubMed ID: 24086179 [TBL] [Abstract][Full Text] [Related]
15. Inkjet Printing of Reactive Silver Ink on Textiles. Shahariar H; Kim I; Soewardiman H; Jur JS ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708 [TBL] [Abstract][Full Text] [Related]
16. Multiple actuation microvalves in wax microfluidics. Díaz-González M; Fernández-Sánchez C; Baldi A Lab Chip; 2016 Oct; 16(20):3969-3976. PubMed ID: 27714007 [TBL] [Abstract][Full Text] [Related]
18. Fully chip-embedded automation of a multi-step lab-on-a-chip process using a modularized timer circuit. Kang J; Lee D; Heo YJ; Chung WK Lab Chip; 2017 Nov; 17(22):3891-3897. PubMed ID: 29051929 [TBL] [Abstract][Full Text] [Related]