These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28809064)

  • 21. Electrofluidic control for textile-based cell culture: Identification of appropriate conditions required to integrate cell culture with electrofluidics.
    Abeywardena SBY; Yue Z; Wallace GG; Innis PC
    Electrophoresis; 2024 Jul; 45(13-14):1182-1197. PubMed ID: 38837242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures.
    Qiang S; Carey T; Arbab A; Song W; Wang C; Torrisi F
    Nanoscale; 2019 May; 11(20):9912-9919. PubMed ID: 31066397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Torque-actuated valves for microfluidics.
    Weibel DB; Kruithof M; Potenta S; Sia SK; Lee A; Whitesides GM
    Anal Chem; 2005 Aug; 77(15):4726-33. PubMed ID: 16053282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in textile-based microfluidics for biomolecule sensing.
    Milić L; Zambry NS; Ibrahim FB; Petrović B; Kojić S; Thiha A; Joseph K; Jamaluddin NF; Stojanović GM
    Biomicrofluidics; 2024 Sep; 18(5):051502. PubMed ID: 39296324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfacial microfluidic transport on micropatterned superhydrophobic textile.
    Xing S; Jiang J; Pan T
    Lab Chip; 2013 May; 13(10):1937-47. PubMed ID: 23536189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aqueous and air-compatible fabrication of high-performance conductive textiles.
    Wang X; Yan C; Hu H; Zhou X; Guo R; Liu X; Xie Z; Huang Z; Zheng Z
    Chem Asian J; 2014 Aug; 9(8):2170-7. PubMed ID: 24867263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autonomous microfluidic capillaric circuits replicated from 3D-printed molds.
    Olanrewaju AO; Robillard A; Dagher M; Juncker D
    Lab Chip; 2016 Sep; 16(19):3804-3814. PubMed ID: 27722504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrowetting (EW)-based valve combined with hydrophilic teflon microfluidic guidance in controlling continuous fluid flow.
    Cheng JY; Hsiung LC
    Biomed Microdevices; 2004 Dec; 6(4):341-7. PubMed ID: 15548880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conquering the Tyranny of Number With Digital Microfluidics.
    Yang YT; Ho TY
    Front Chem; 2021; 9():676365. PubMed ID: 34124004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible and stretchable microbial fuel cells with modified conductive and hydrophilic textile.
    Pang S; Gao Y; Choi S
    Biosens Bioelectron; 2018 Feb; 100():504-511. PubMed ID: 28972941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of Oligomer Stamping Technique for Normally Closed Elastomeric Valves on Glass Substrate.
    Dungan J; Mathews J; Levin M; Koomson V
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autonomous microfluidics with stimuli-responsive hydrogels.
    Dong L; Jiang H
    Soft Matter; 2007 Sep; 3(10):1223-1230. PubMed ID: 32900089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A microfluidic system integrated with shape memory alloy valves for a safe direct current delivery system.
    Cheng C; Aplin FP; Fridman GY
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3544-3548. PubMed ID: 33018768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances on open fluidic systems for biomedical applications: A review.
    Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures.
    Lee TA; Liao WH; Wu YF; Chen YL; Tung YC
    Anal Chem; 2018 Feb; 90(3):2317-2325. PubMed ID: 29293313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic Printing of Slippery Textiles for Medical Drainage around Wounds.
    Zhang H; Chen G; Yu Y; Guo J; Tan Q; Zhao Y
    Adv Sci (Weinh); 2020 Aug; 7(16):2000789. PubMed ID: 32832352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.