These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2880930)

  • 1. L-phenylalanyl-L-glutamate-stimulated, chloride-dependent glutamate binding represents glutamate sequestration mediated by an exchange system.
    Kessler M; Petersen G; Vu HM; Baudry M; Lynch G
    J Neurochem; 1987 Apr; 48(4):1191-200. PubMed ID: 2880930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of chloride-dependent incorporation of glutamate into brain membranes argue against a receptor binding site.
    Zaczek R; Arlis S; Markl A; Murphy T; Drucker H; Coyle JT
    Neuropharmacology; 1987 Apr; 26(4):281-7. PubMed ID: 2884589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate-containing dipeptides do not modulate ligand binding at excitatory amino acid receptors.
    Baud J; Fagg GE
    Neurosci Lett; 1986 Oct; 70(2):228-33. PubMed ID: 3022194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes.
    Inui K; Tomita Y; Katsura T; Okano T; Takano M; Hori R
    J Pharmacol Exp Ther; 1992 Feb; 260(2):482-6. PubMed ID: 1738097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride ions enhance L-glutamate binding to rat brain synaptic membranes.
    Mena EE; Fagg GE; Cotman CW
    Brain Res; 1982 Jul; 243(2):378-81. PubMed ID: 6125247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate transport and not glutamate receptor binding is stimulated by gangliosides in a Ca2+-dependent manner in rat brain synaptic plasma membranes.
    Hollmann M; Seifert W
    J Neurochem; 1989 Sep; 53(3):716-23. PubMed ID: 2569501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ca2+/C1- dependent L-[3H]glutamate binding: a new receptor or a particular transport process?
    Pin JP; Bockaert J; Recasesn M
    FEBS Lett; 1984 Sep; 175(1):31-6. PubMed ID: 6090209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counterflow of L-glutamate in plasma membrane vesicles and reconstituted preparations from rat brain.
    Pines G; Kanner BI
    Biochemistry; 1990 Dec; 29(51):11209-14. PubMed ID: 1980217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate. Identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat brain.
    Robinson MB; Blakely RD; Couto R; Coyle JT
    J Biol Chem; 1987 Oct; 262(30):14498-506. PubMed ID: 3667587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of quisqualate-sensitive L-[3H]glutamate binding sites in rat brain as determined by quantitative autoradiography.
    Cha JH; Greenamyre JT; Nielsen EO; Penney JB; Young AB
    J Neurochem; 1988 Aug; 51(2):469-78. PubMed ID: 2899133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis.
    Smid EJ; Driessen AJ; Konings WN
    J Bacteriol; 1989 Jan; 171(1):292-8. PubMed ID: 2492499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are Ca2+-dependent proteases really responsible for Cl(-)-dependent and Ca2+-stimulated binding of [3H]glutamate in rat brain?
    Yoneda Y; Ogita K
    Brain Res; 1987 Jan; 400(1):70-9. PubMed ID: 2880636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of cystine to distinguish glutamate binding from glutamate sequestration.
    Kessler M; Baudry M; Lynch G
    Neurosci Lett; 1987 Oct; 81(1-2):221-6. PubMed ID: 2827067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptosomal transport of radiolabel from N-acetyl-aspartyl-[3H]glutamate suggests a mechanism of inactivation of an excitatory neuropeptide.
    Blakely RD; Ory-Lavollée L; Thompson RC; Coyle JT
    J Neurochem; 1986 Oct; 47(4):1013-9. PubMed ID: 2875126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple Cl(-)-independent binding sites for the excitatory amino acids: glutamate, aspartate and cysteine sulfinate in rat brain membranes.
    Pin JP; Rumigny JF; Bockaert J; Recasens M
    Brain Res; 1987 Jan; 402(1):11-20. PubMed ID: 2881598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of L[3H]-glutamate and L[3H]-cysteine sulfinate binding sites in subcellular fractions of rat brain.
    Recasens M; Saadoun F; Baudry M; Maitre M; Lynch G
    J Neurosci Res; 1984; 11(2):157-69. PubMed ID: 6142962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the interactions of N-acetyl-aspartyl-glutamate with [3H]L-glutamate receptors.
    Koller KJ; Coyle JT
    Eur J Pharmacol; 1984 Feb; 98(2):193-9. PubMed ID: 6143677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of L-glutamic acid transport by glioma cells in culture: evidence for sodium-independent, chloride-dependent high affinity influx.
    Waniewski RA; Martin DL
    J Neurosci; 1984 Sep; 4(9):2237-46. PubMed ID: 6207276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of Cl-/Ca2+-dependent and sodium dependent 3H-glutamate binding to cortical membranes from rat brain by high energy radiation inactivation analysis.
    Honoré T; Drejer J; Nielsen M; Braestrup C
    J Neural Transm; 1986; 65(2):93-101. PubMed ID: 2871127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2.
    Saito H; Inui K
    Am J Physiol; 1993 Aug; 265(2 Pt 1):G289-94. PubMed ID: 8396335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.