These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 28809309)
1. Single Grain Boundary Modeling and Design of Microcrystalline Si Solar Cells. Lin CH; Hsu WT; Tai CH Materials (Basel); 2013 Jan; 6(1):291-298. PubMed ID: 28809309 [TBL] [Abstract][Full Text] [Related]
2. Shrinking and growing: grain boundary density reduction for efficient polysilicon thin-film solar cells. Kim DR; Lee CH; Weisse JM; Cho IS; Zheng X Nano Lett; 2012 Dec; 12(12):6485-91. PubMed ID: 23167740 [TBL] [Abstract][Full Text] [Related]
3. Modeling the current-voltage characteristics of thin-film silicon solar cells based on photo-induced electron transfer processes. Isoda S J Environ Sci (China); 2013 Dec; 25 Suppl 1():S172-9. PubMed ID: 25078825 [TBL] [Abstract][Full Text] [Related]
4. Silicon Nanowire Heterojunction Solar Cells with an Al Kato S; Kurokawa Y; Gotoh K; Soga T Nanoscale Res Lett; 2019 Mar; 14(1):99. PubMed ID: 30877482 [TBL] [Abstract][Full Text] [Related]
5. Ultra-thin Ag/Si heterojunction hot-carrier photovoltaic conversion Schottky devices for harvesting solar energy at wavelength above 1.1 µm. Su ZC; Chang CH; Jhou JC; Lin HT; Lin CF Sci Rep; 2023 Apr; 13(1):5388. PubMed ID: 37012262 [TBL] [Abstract][Full Text] [Related]
6. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Jeong S; McGehee MD; Cui Y Nat Commun; 2013; 4():2950. PubMed ID: 24335845 [TBL] [Abstract][Full Text] [Related]
7. Radial n-i-p structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel. Xie X; Zeng X; Yang P; Li H; Li J; Zhang X; Wang Q Nanoscale Res Lett; 2012 Nov; 7(1):621. PubMed ID: 23146105 [TBL] [Abstract][Full Text] [Related]
9. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression. He J; Gao P; Liao M; Yang X; Ying Z; Zhou S; Ye J; Cui Y ACS Nano; 2015 Jun; 9(6):6522-31. PubMed ID: 26047260 [TBL] [Abstract][Full Text] [Related]
10. Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures. Ishizaki K; De Zoysa M; Tanaka Y; Umeda T; Kawamoto Y; Noda S Opt Express; 2015 Sep; 23(19):A1040-50. PubMed ID: 26406734 [TBL] [Abstract][Full Text] [Related]
11. A study on the correlation between the grain size and the conversion efficiency of Mc-Si solar cells. Lee MB; Song KH; Park KM; Jung JH; Bae SI J Nanosci Nanotechnol; 2012 Jul; 12(7):5691-5. PubMed ID: 22966635 [TBL] [Abstract][Full Text] [Related]
12. A review on solar cells from Si-single crystals to porous materials and quantum dots. Badawy WA J Adv Res; 2015 Mar; 6(2):123-32. PubMed ID: 25750746 [TBL] [Abstract][Full Text] [Related]
13. Vacuum-Free, Room-Temperature Organic Passivation of Silicon: Toward Very Low Recombination of Micro-/Nanotextured Surface Structures. Chen J; Ge K; Zhang C; Guo J; Yang L; Song D; Li F; Xu Z; Xu Y; Mai Y ACS Appl Mater Interfaces; 2018 Dec; 10(51):44890-44896. PubMed ID: 30499658 [TBL] [Abstract][Full Text] [Related]
14. Light trapping in ultrathin 25 μm exfoliated Si solar cells. Hilali MM; Saha S; Onyegam E; Rao R; Mathew L; Banerjee SK Appl Opt; 2014 Sep; 53(27):6140-7. PubMed ID: 25322089 [TBL] [Abstract][Full Text] [Related]
15. Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation. Zhang X; Yang D; Yang Z; Guo X; Liu B; Ren X; Liu SF Sci Rep; 2016 Oct; 6():35091. PubMed ID: 27725714 [TBL] [Abstract][Full Text] [Related]
16. Maximizing Short Circuit Current Density and Open Circuit Voltage in Oxygen Vacancy-Controlled Bi Nandy S; Kaur K; Gautam S; Chae KH; Nanda BRK; Sudakar C ACS Appl Mater Interfaces; 2020 Mar; 12(12):14105-14118. PubMed ID: 32118399 [TBL] [Abstract][Full Text] [Related]
17. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications. Sharma M; Pudasaini PR; Ruiz-Zepeda F; Vinogradova E; Ayon AA ACS Appl Mater Interfaces; 2014 Sep; 6(17):15472-9. PubMed ID: 25137194 [TBL] [Abstract][Full Text] [Related]
18. Correlation between in Situ Diagnostics of the Hydrogen Plasma and the Interface Passivation Quality of Hydrogen Plasma Post-Treated a-Si:H in Silicon Heterojunction Solar Cells. Soman A; Nsofor U; Das U; Gu T; Hegedus S ACS Appl Mater Interfaces; 2019 May; 11(17):16181-16190. PubMed ID: 30951278 [TBL] [Abstract][Full Text] [Related]
19. The enhanced efficiency of graphene-silicon solar cells by electric field doping. Yu X; Yang L; Lv Q; Xu M; Chen H; Yang D Nanoscale; 2015 Apr; 7(16):7072-7. PubMed ID: 25588162 [TBL] [Abstract][Full Text] [Related]
20. Doping-free fabrication of silicon thin films for schottky solar cell. Yun JH; Park YC; Yi J; Woo CS; Kim J J Nanosci Nanotechnol; 2012 Feb; 12(2):1371-4. PubMed ID: 22629959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]