BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28809318)

  • 1. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.
    Etgar L
    Materials (Basel); 2013 Feb; 6(2):445-459. PubMed ID: 28809318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor quantum dot-sensitized solar cells.
    Tian J; Cao G
    Nano Rev; 2013 Oct; 4():. PubMed ID: 24191178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers.
    Shaikh JS; Shaikh NS; Mali SS; Patil JV; Beknalkar SA; Patil AP; Tarwal NL; Kanjanaboos P; Hong CK; Patil PS
    ChemSusChem; 2019 Nov; 12(21):4724-4753. PubMed ID: 31347771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction Au/FAPbI
    Que M; Wu Q; Li Y; Yuan H; Zhong P; He S; Xu Y; Li B; Ma X; Que W
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38934361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design Strategy of Quantum Dot Thin-Film Solar Cells.
    Kim T; Lim S; Yun S; Jeong S; Park T; Choi J
    Small; 2020 Nov; 16(45):e2002460. PubMed ID: 33079485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α-CsPbBr
    Zhang X; Qian Y; Ling X; Wang Y; Zhang Y; Shi J; Shi Y; Yuan J; Ma W
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27307-27315. PubMed ID: 32452206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.
    Kim MR; Ma D
    J Phys Chem Lett; 2015 Jan; 6(1):85-99. PubMed ID: 26263096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advancement on quantum dot-coupled heterojunction structures in catalysis:A review.
    Yu W; Chamkouri H; Chen L
    Chemosphere; 2024 Jun; 357():141944. PubMed ID: 38614402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal Quantum Dot Solar Cells: Progressive Deposition Techniques and Future Prospects on Large-Area Fabrication.
    Zhao Q; Han R; Marshall AR; Wang S; Wieliczka BM; Ni J; Zhang J; Yuan J; Luther JM; Hazarika A; Li GR
    Adv Mater; 2022 Apr; 34(17):e2107888. PubMed ID: 35023606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells.
    Ren Z; Yu J; Pan Z; Wang J; Zhong X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High efficiency perovskite quantum dot solar cells with charge separating heterostructure.
    Zhao Q; Hazarika A; Chen X; Harvey SP; Larson BW; Teeter GR; Liu J; Song T; Xiao C; Shaw L; Zhang M; Li G; Beard MC; Luther JM
    Nat Commun; 2019 Jun; 10(1):2842. PubMed ID: 31253800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell.
    Semonin OE; Luther JM; Choi S; Chen HY; Gao J; Nozik AJ; Beard MC
    Science; 2011 Dec; 334(6062):1530-3. PubMed ID: 22174246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dot-sensitized solar cells.
    Pan Z; Rao H; Mora-Seró I; Bisquert J; Zhong X
    Chem Soc Rev; 2018 Oct; 47(20):7659-7702. PubMed ID: 30209490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lead Halide Perovskite Quantum Dots To Enhance the Power Conversion Efficiency of Organic Solar Cells.
    Guijarro N; Yao L; Le Formal F; Wells RA; Liu Y; Darwich BP; Navratilova L; Cho HH; Yum JH; Sivula K
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12696-12704. PubMed ID: 31328858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications.
    Chistyakov AA; Zvaigzne MA; Nikitenko VR; Tameev AR; Martynov IL; Prezhdo OV
    J Phys Chem Lett; 2017 Sep; 8(17):4129-4139. PubMed ID: 28799772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells.
    Zhao K; Pan Z; Zhong X
    J Phys Chem Lett; 2016 Feb; 7(3):406-17. PubMed ID: 26758605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiconductor quantum dots as a mechanism to enhance charge transfer processes in polymer solar cells.
    Ogundele AK; Mola GT
    Chemosphere; 2023 Dec; 345():140453. PubMed ID: 37844707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II⁻VI and IV⁻VI Inorganic Semiconductor Quantum Dots.
    Kisslinger R; Hua W; Shankar K
    Polymers (Basel); 2017 Jan; 9(2):. PubMed ID: 30970717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.