BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 2880938)

  • 1. Ionic dependence of glutamate neurotoxicity.
    Choi DW
    J Neurosci; 1987 Feb; 7(2):369-79. PubMed ID: 2880938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium influx constitutes the ionic basis for the maintenance of glutamate-induced extended neuronal depolarization associated with hippocampal neuronal death.
    Limbrick DD; Sombati S; DeLorenzo RJ
    Cell Calcium; 2003 Feb; 33(2):69-81. PubMed ID: 12531183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate neurotoxicity in cortical cell culture is calcium dependent.
    Choi DW
    Neurosci Lett; 1985 Aug; 58(3):293-7. PubMed ID: 2413399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S
    J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists.
    Choi DW; Koh JY; Peters S
    J Neurosci; 1988 Jan; 8(1):185-96. PubMed ID: 2892896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-channel activity in cultured cortical neurons of the rat in the presence of a toxic dose of glutamate.
    Backus KH; Trube G
    Eur J Neurosci; 1993 Feb; 5(2):174-85. PubMed ID: 7505165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury.
    Goldberg MP; Choi DW
    J Neurosci; 1993 Aug; 13(8):3510-24. PubMed ID: 8101871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate neurotoxicity in cortical cell culture.
    Choi DW; Maulucci-Gedde M; Kriegstein AR
    J Neurosci; 1987 Feb; 7(2):357-68. PubMed ID: 2880937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate neurotoxicity in mesencephalic dopaminergic neurons in culture.
    Kikuchi S; Kim SU
    J Neurosci Res; 1993 Dec; 36(5):558-69. PubMed ID: 7908339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA.
    Belhage B; Hansen GH; Schousboe A
    Neuroscience; 1993 Jun; 54(4):1019-34. PubMed ID: 8101980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.
    Babot Z; Cristòfol R; Suñol C
    Eur J Neurosci; 2005 Jan; 21(1):103-12. PubMed ID: 15654847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin.
    Vale C; Alfonso A; Suñol C; Vieytes MR; Botana LM
    J Neurosci Res; 2006 Jun; 83(8):1393-406. PubMed ID: 16547972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroprotective activity of stiripentol with a possible involvement of voltage-dependent calcium and sodium channels.
    Verleye M; Buttigieg D; Steinschneider R
    J Neurosci Res; 2016 Feb; 94(2):179-89. PubMed ID: 26511438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-methyl-D-aspartate receptor-mediated calcium accumulation in neocortical neurons.
    Burgard EC; Hablitz JJ
    Neuroscience; 1995 Nov; 69(2):351-62. PubMed ID: 8552233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moclobemide attenuates anoxia and glutamate-induced neuronal damage in vitro independently of interaction with glutamate receptor subtypes.
    Verleye M; Steinschneider R; Bernard FX; Gillardin JM
    Brain Res; 2007 Mar; 1138():30-8. PubMed ID: 17274964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal injury evoked by depolarizing agents in rat cortical cultures.
    Ramnath RR; Strange K; Rosenberg PA
    Neuroscience; 1992 Dec; 51(4):931-9. PubMed ID: 1362603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity.
    Sattler R; Charlton MP; Hafner M; Tymianski M
    J Neurochem; 1998 Dec; 71(6):2349-64. PubMed ID: 9832133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na(+) dependence and the role of glutamate receptors and Na(+) channels in ion fluxes during hypoxia of rat hippocampal slices.
    Müller M; Somjen GG
    J Neurophysiol; 2000 Oct; 84(4):1869-80. PubMed ID: 11024079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct roles for sodium, chloride, and calcium in excitotoxic dendritic injury and recovery.
    Hasbani MJ; Hyrc KL; Faddis BT; Romano C; Goldberg MP
    Exp Neurol; 1998 Nov; 154(1):241-58. PubMed ID: 9875285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ionic mechanism of the excitatory action of glutamate upon the membranes of motoneurones of the frog.
    Bührle CP; Sonnhof U
    Pflugers Arch; 1983 Feb; 396(2):154-62. PubMed ID: 6601261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.