BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 28809671)

  • 1. Transduction on Directed Graphs via Absorbing Random Walks.
    De J; Zhang X; Lin F; Cheng L; De J; Xiaowei Zhang ; Feng Lin ; Li Cheng ; De J; Cheng L; Zhang X; Lin F
    IEEE Trans Pattern Anal Mach Intell; 2018 Jul; 40(7):1770-1784. PubMed ID: 28809671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spectral graph convolution for signed directed graphs via magnetic Laplacian.
    Ko T; Choi Y; Kim CK
    Neural Netw; 2023 Jul; 164():562-574. PubMed ID: 37216757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual exploration of complex time-varying graphs.
    Kumar G; Garland M
    IEEE Trans Vis Comput Graph; 2006; 12(5):805-12. PubMed ID: 17080803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Graph Stream Algorithms in
    Huang Z; Peng P
    Algorithmica; 2019; 81(5):1965-1987. PubMed ID: 31057194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual Tracking via Random Walks on Graph Model.
    Li X; Han Z; Wang L; Lu H
    IEEE Trans Cybern; 2016 Sep; 46(9):2144-55. PubMed ID: 26292358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data.
    Bhadra S; Bhattacharyya C; Chandra NR; Mian IS
    Algorithms Mol Biol; 2009 Feb; 4():5. PubMed ID: 19239685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can a Quantum Walk Tell Which Is Which?A Study of Quantum Walk-Based Graph Similarity.
    Minello G; Rossi L; Torsello A
    Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33267042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic graph structure estimation using graph Laplacian.
    Noda A; Hino H; Tatsuno M; Akaho S; Murata N
    Neural Comput; 2014 Jul; 26(7):1455-83. PubMed ID: 24708372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting for multi-graph classification.
    Wu J; Pan S; Zhu X; Cai Z
    IEEE Trans Cybern; 2015 Mar; 45(3):430-43. PubMed ID: 25014984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direction Matters: On Influence-Preserving Graph Summarization and Max-Cut Principle for Directed Graphs.
    Xu W; Niu G; Hyvärinen A; Sugiyama M
    Neural Comput; 2021 Jul; 33(8):2128-2162. PubMed ID: 34310677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AN EFFICIENT ALGORITHM FOR CHINESE POSTMAN WALK ON BI-DIRECTED DE BRUIJN GRAPHS.
    Kundeti V; Rajasekaran S; Dinh H
    Discrete Math Algorithms Appl; 2010; 1():184-196. PubMed ID: 25364472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean first-passage time for random walks in general graphs with a deep trap.
    Lin Y; Julaiti A; Zhang Z
    J Chem Phys; 2012 Sep; 137(12):124104. PubMed ID: 23020321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey on graph embeddings and their applications to machine learning problems on graphs.
    Makarov I; Kiselev D; Nikitinsky N; Subelj L
    PeerJ Comput Sci; 2021; 7():e357. PubMed ID: 33817007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Context-Dependent Random Walk Graph Kernels and Tree Pattern Graph Matching Kernels with Applications to Action Recognition.
    Hu W; Wu B; Wang P; Yuan C; Li Y; Maybank S
    IEEE Trans Image Process; 2018 Jun; ():. PubMed ID: 29994476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DRGraph: An Efficient Graph Layout Algorithm for Large-scale Graphs by Dimensionality Reduction.
    Zhu M; Chen W; Hu Y; Hou Y; Liu L; Zhang K
    IEEE Trans Vis Comput Graph; 2021 Feb; 27(2):1666-1676. PubMed ID: 33275582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing statistical significance in causal graphs.
    Chindelevitch L; Loh PR; Enayetallah A; Berger B; Ziemek D
    BMC Bioinformatics; 2012 Feb; 13():35. PubMed ID: 22348444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-way association extraction and visualization from biological text documents using hyper-graphs: applications to genetic association studies for diseases.
    Mukhopadhyay S; Palakal M; Maddu K
    Artif Intell Med; 2010 Jul; 49(3):145-54. PubMed ID: 20382004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backtrackless walks on a graph.
    Aziz F; Wilson RC; Hancock ER
    IEEE Trans Neural Netw Learn Syst; 2013 Jun; 24(6):977-89. PubMed ID: 24808478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification.
    Fouss F; Francoisse K; Yen L; Pirotte A; Saerens M
    Neural Netw; 2012 Jul; 31():53-72. PubMed ID: 22497802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GRAPE for fast and scalable graph processing and random-walk-based embedding.
    Cappelletti L; Fontana T; Casiraghi E; Ravanmehr V; Callahan TJ; Cano C; Joachimiak MP; Mungall CJ; Robinson PN; Reese J; Valentini G
    Nat Comput Sci; 2023 Jun; 3(6):552-568. PubMed ID: 38177435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.