These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 28809671)
1. Transduction on Directed Graphs via Absorbing Random Walks. De J; Zhang X; Lin F; Cheng L; De J; Xiaowei Zhang ; Feng Lin ; Li Cheng ; De J; Cheng L; Zhang X; Lin F IEEE Trans Pattern Anal Mach Intell; 2018 Jul; 40(7):1770-1784. PubMed ID: 28809671 [TBL] [Abstract][Full Text] [Related]
2. A spectral graph convolution for signed directed graphs via magnetic Laplacian. Ko T; Choi Y; Kim CK Neural Netw; 2023 Jul; 164():562-574. PubMed ID: 37216757 [TBL] [Abstract][Full Text] [Related]
3. Visual exploration of complex time-varying graphs. Kumar G; Garland M IEEE Trans Vis Comput Graph; 2006; 12(5):805-12. PubMed ID: 17080803 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Graph Stream Algorithms in Huang Z; Peng P Algorithmica; 2019; 81(5):1965-1987. PubMed ID: 31057194 [TBL] [Abstract][Full Text] [Related]
5. Visual Tracking via Random Walks on Graph Model. Li X; Han Z; Wang L; Lu H IEEE Trans Cybern; 2016 Sep; 46(9):2144-55. PubMed ID: 26292358 [TBL] [Abstract][Full Text] [Related]
6. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data. Bhadra S; Bhattacharyya C; Chandra NR; Mian IS Algorithms Mol Biol; 2009 Feb; 4():5. PubMed ID: 19239685 [TBL] [Abstract][Full Text] [Related]
7. Can a Quantum Walk Tell Which Is Which?A Study of Quantum Walk-Based Graph Similarity. Minello G; Rossi L; Torsello A Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33267042 [TBL] [Abstract][Full Text] [Related]
8. Intrinsic graph structure estimation using graph Laplacian. Noda A; Hino H; Tatsuno M; Akaho S; Murata N Neural Comput; 2014 Jul; 26(7):1455-83. PubMed ID: 24708372 [TBL] [Abstract][Full Text] [Related]
9. Boosting for multi-graph classification. Wu J; Pan S; Zhu X; Cai Z IEEE Trans Cybern; 2015 Mar; 45(3):430-43. PubMed ID: 25014984 [TBL] [Abstract][Full Text] [Related]
10. Direction Matters: On Influence-Preserving Graph Summarization and Max-Cut Principle for Directed Graphs. Xu W; Niu G; Hyvärinen A; Sugiyama M Neural Comput; 2021 Jul; 33(8):2128-2162. PubMed ID: 34310677 [TBL] [Abstract][Full Text] [Related]
11. AN EFFICIENT ALGORITHM FOR CHINESE POSTMAN WALK ON BI-DIRECTED DE BRUIJN GRAPHS. Kundeti V; Rajasekaran S; Dinh H Discrete Math Algorithms Appl; 2010; 1():184-196. PubMed ID: 25364472 [TBL] [Abstract][Full Text] [Related]
12. Mean first-passage time for random walks in general graphs with a deep trap. Lin Y; Julaiti A; Zhang Z J Chem Phys; 2012 Sep; 137(12):124104. PubMed ID: 23020321 [TBL] [Abstract][Full Text] [Related]
13. Context-Dependent Random Walk Graph Kernels and Tree Pattern Graph Matching Kernels with Applications to Action Recognition. Hu W; Wu B; Wang P; Yuan C; Li Y; Maybank S IEEE Trans Image Process; 2018 Jun; ():. PubMed ID: 29994476 [TBL] [Abstract][Full Text] [Related]
14. DRGraph: An Efficient Graph Layout Algorithm for Large-scale Graphs by Dimensionality Reduction. Zhu M; Chen W; Hu Y; Hou Y; Liu L; Zhang K IEEE Trans Vis Comput Graph; 2021 Feb; 27(2):1666-1676. PubMed ID: 33275582 [TBL] [Abstract][Full Text] [Related]
16. Multi-way association extraction and visualization from biological text documents using hyper-graphs: applications to genetic association studies for diseases. Mukhopadhyay S; Palakal M; Maddu K Artif Intell Med; 2010 Jul; 49(3):145-54. PubMed ID: 20382004 [TBL] [Abstract][Full Text] [Related]
17. Backtrackless walks on a graph. Aziz F; Wilson RC; Hancock ER IEEE Trans Neural Netw Learn Syst; 2013 Jun; 24(6):977-89. PubMed ID: 24808478 [TBL] [Abstract][Full Text] [Related]
18. An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Fouss F; Francoisse K; Yen L; Pirotte A; Saerens M Neural Netw; 2012 Jul; 31():53-72. PubMed ID: 22497802 [TBL] [Abstract][Full Text] [Related]
19. GRAPE for fast and scalable graph processing and random-walk-based embedding. Cappelletti L; Fontana T; Casiraghi E; Ravanmehr V; Callahan TJ; Cano C; Joachimiak MP; Mungall CJ; Robinson PN; Reese J; Valentini G Nat Comput Sci; 2023 Jun; 3(6):552-568. PubMed ID: 38177435 [TBL] [Abstract][Full Text] [Related]
20. MINDWALC: mining interpretable, discriminative walks for classification of nodes in a knowledge graph. Vandewiele G; Steenwinckel B; Turck F; Ongenae F BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 4):191. PubMed ID: 33317504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]