These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 28809677)
1. Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond. Segars WP; Tsui BMW; Jing Cai ; Fang-Fang Yin ; Fung GSK; Samei E IEEE Trans Med Imaging; 2018 Mar; 37(3):680-692. PubMed ID: 28809677 [TBL] [Abstract][Full Text] [Related]
2. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization. Segars WP; Bond J; Frush J; Hon S; Eckersley C; Williams CH; Feng J; Tward DJ; Ratnanather JT; Miller MI; Frush D; Samei E Med Phys; 2013 Apr; 40(4):043701. PubMed ID: 23556927 [TBL] [Abstract][Full Text] [Related]
3. A set of 4D pediatric XCAT reference phantoms for multimodality research. Norris H; Zhang Y; Bond J; Sturgeon GM; Minhas A; Tward DJ; Ratnanather JT; Miller MI; Frush D; Samei E; Segars WP Med Phys; 2014 Mar; 41(3):033701. PubMed ID: 24593745 [TBL] [Abstract][Full Text] [Related]
4. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research: Computer models that take account of body movements promise to provide evaluation and improvement of medical imaging devices and technology. Paul Segars W; Tsui BM Proc IEEE Inst Electr Electron Eng; 2009 Dec; 97(12):1954-1968. PubMed ID: 26472880 [TBL] [Abstract][Full Text] [Related]
5. The development of a population of 4D pediatric XCAT phantoms for imaging research and optimization. Segars WP; Norris H; Sturgeon GM; Zhang Y; Bond J; Minhas A; Tward DJ; Ratnanather JT; Miller MI; Frush D; Samei E Med Phys; 2015 Aug; 42(8):4719-26. PubMed ID: 26233199 [TBL] [Abstract][Full Text] [Related]
7. Modeling Lung Architecture in the XCAT Series of Phantoms: Physiologically Based Airways, Arteries and Veins. Abadi E; Segars WP; Sturgeon GM; Roos JE; Ravin CE; Samei E IEEE Trans Med Imaging; 2018 Mar; 37(3):693-702. PubMed ID: 29533891 [TBL] [Abstract][Full Text] [Related]
8. Development of scalable lymphatic system in the 4D XCAT phantom: Application to quantitative evaluation of lymphoma PET segmentations. Fedrigo R; Segars WP; Martineau P; Gowdy C; Bloise I; Uribe CF; Rahmim A Med Phys; 2022 Nov; 49(11):6871-6884. PubMed ID: 36053829 [TBL] [Abstract][Full Text] [Related]
9. A generative adversarial network (GAN)-based technique for synthesizing realistic respiratory motion in the extended cardiac-torso (XCAT) phantoms. Chang Y; Jiang Z; Segars WP; Zhang Z; Lafata K; Cai J; Yin FF; Ren L Phys Med Biol; 2021 May; 66(11):. PubMed ID: 34061044 [No Abstract] [Full Text] [Related]
10. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging. Könik A; Connolly CM; Johnson KL; Dasari P; Segars PW; Pretorius PH; Lindsay C; Dey J; King MA Phys Med Biol; 2014 Jul; 59(14):3669-82. PubMed ID: 24925891 [TBL] [Abstract][Full Text] [Related]
11. Realistic CT simulation using the 4D XCAT phantom. Segars WP; Mahesh M; Beck TJ; Frey EC; Tsui BM Med Phys; 2008 Aug; 35(8):3800-8. PubMed ID: 18777939 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of the Living Heart Model into the 4D XCAT Phantom for Cardiac Imaging Research. Segars WP; Veress AI; Sturgeon GM; Samei E IEEE Trans Radiat Plasma Med Sci; 2019 Jan; 3(1):54-60. PubMed ID: 30766954 [TBL] [Abstract][Full Text] [Related]
13. Development of realistic multi-contrast textured XCAT (MT-XCAT) phantoms using a dual-discriminator conditional-generative adversarial network (D-CGAN). Chang Y; Lafata K; Segars WP; Yin FF; Ren L Phys Med Biol; 2020 Mar; 65(6):065009. PubMed ID: 32023555 [TBL] [Abstract][Full Text] [Related]
14. Anatomically and physiologically informed computational model of hepatic contrast perfusion for virtual imaging trials. Sauer TJ; Abadi E; Segars P; Samei E Med Phys; 2022 May; 49(5):2938-2951. PubMed ID: 35195901 [TBL] [Abstract][Full Text] [Related]
15. A Monte Carlo study for optimizing the detector of SPECT imaging using a XCAT human phantom. Khoshakhlagh M; Pirayesh Islamian J; Abedi SM; Mahmoudian B; Shayesteh Azar M Nucl Med Rev Cent East Eur; 2017; 20(1):10-14. PubMed ID: 28198517 [TBL] [Abstract][Full Text] [Related]
16. The UF family of reference hybrid phantoms for computational radiation dosimetry. Lee C; Lodwick D; Hurtado J; Pafundi D; Williams JL; Bolch WE Phys Med Biol; 2010 Jan; 55(2):339-63. PubMed ID: 20019401 [TBL] [Abstract][Full Text] [Related]
17. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models. Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995 [TBL] [Abstract][Full Text] [Related]
18. Practical Nuclear Medicine and Utility of Phantoms for Internal Dosimetry: XCAT Compared with Zubal. Fallahpoor M; Abbasi M; Kalantari F; Parach AA; Sen A Radiat Prot Dosimetry; 2017 Apr; 174(2):191-197. PubMed ID: 27247443 [TBL] [Abstract][Full Text] [Related]
19. Exploitation of realistic computational anthropomorphic phantoms for the optimization of nuclear imaging acquisition and processing protocols. Loudos GK; Papadimitroulas PG; Kagadis GC Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1921-4. PubMed ID: 25570355 [TBL] [Abstract][Full Text] [Related]
20. Generation of a suite of 3D computer-generated breast phantoms from a limited set of human subject data. Hsu CM; Palmeri ML; Segars WP; Veress AI; Dobbins JT Med Phys; 2013 Apr; 40(4):043703. PubMed ID: 23556929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]