These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28809695)

  • 1. Looking Beyond the Simple Scenarios: Combining Learners and Optimizers in 3D Temporal Tracking.
    Tan DJ; Navab N; Tombari F
    IEEE Trans Vis Comput Graph; 2017 Nov; 23(11):2399-2409. PubMed ID: 28809695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Fusion of Color and Depth Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth Models and Spatio-Temporal Consistency Constraints.
    Xiao J; Stolkin R; Gao Y; Leonardis A
    IEEE Trans Cybern; 2018 Aug; 48(8):2485-2499. PubMed ID: 28885166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time markerless tracking for augmented reality: the virtual visual servoing framework.
    Comport AI; Marchand E; Pressigout M; Chaumette F
    IEEE Trans Vis Comput Graph; 2006; 12(4):615-28. PubMed ID: 16805268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust 3D Object Tracking from Monocular Images Using Stable Parts.
    Crivellaro A; Rad M; Verdie Y; Yi KM; Fua P; Lepetit V
    IEEE Trans Pattern Anal Mach Intell; 2018 Jun; 40(6):1465-1479. PubMed ID: 28574342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation-Based Tracker-Level Fusion for Robust Visual Tracking.
    Rapuru MK; Kakanuru S; Venugopal PM; Mishra D; Subrahmanyam GRKS
    IEEE Trans Image Process; 2017 Oct; 26(10):4832-4842. PubMed ID: 28463200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.
    Loukas C; Lahanas V; Georgiou E
    Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Range Augmented Reality with Dynamic Occlusion Rendering.
    Sizintsev M; Mithun NC; Chiu HP; Samarasekera S; Kumar R
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4236-4244. PubMed ID: 34449369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and Robust Learning for Sustainable and Reacquisition-Enabled Hand Tracking.
    Abul Aziz MA; Niu J; Zhao X; Li X
    IEEE Trans Cybern; 2016 Apr; 46(4):945-58. PubMed ID: 25898327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal local searching for fast and robust textureless 3D object tracking in highly cluttered backgrounds.
    Seo BK; Park H; Park JI; Hinterstoisser S; Ilic S
    IEEE Trans Vis Comput Graph; 2014 Jan; 20(1):99-110. PubMed ID: 24201329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and Efficient CPU-Based RGB-D Scene Reconstruction.
    Li J; Gao W; Li H; Tang F; Wu Y
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle Filters and Occlusion Handling for Rigid 2D-3D Pose Tracking.
    Lee J; Sandhu R; Tannenbaum A
    Comput Vis Image Underst; 2013 Aug; 117(8):922-933. PubMed ID: 24058277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction based collaborative trackers (PCT): a robust and accurate approach toward 3D medical object tracking.
    Yang L; Georgescu B; Zheng Y; Wang Y; Meer P; Comaniciu D
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1921-32. PubMed ID: 21642040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers.
    Zhu T; Hiller M; Ehsanpour M; Ma R; Drummond T; Reid I; Rezatofighi H
    IEEE Trans Pattern Anal Mach Intell; 2023 Nov; 45(11):12783-12797. PubMed ID: 36215373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks.
    Su PC; Shen J; Xu W; Cheung SS; Luo Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Texture-Independent Long-Term Tracking Using Virtual Corners.
    Lebeda K; Hadfield S; Matas J; Bowden R
    IEEE Trans Image Process; 2016 Jan; 25(1):359-71. PubMed ID: 26552087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C.DOT - Convolutional Deep Object Tracker for Augmented Reality Based Purely on Synthetic Data.
    Thiel KK; Naumann F; Jundt E; Gunnemann S; Klinker G
    IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4434-4451. PubMed ID: 34125682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional mesh-based mosaic representation for manipulation of video objects with occlusion.
    Toklu C; Tanju Erdem A; Murat Tekalp A
    IEEE Trans Image Process; 2000; 9(9):1617-30. PubMed ID: 18262998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network.
    Kulikajevas A; Maskeliūnas R; Damaševičius R; Ho ESL
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Spatio-Temporal Clustering and Reconstruction of Multiple Deformable Bodies.
    Agudo A; Moreno-Noguer F
    IEEE Trans Pattern Anal Mach Intell; 2019 Apr; 41(4):971-984. PubMed ID: 29993925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.