These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28809710)

  • 21. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    Biomed Microdevices; 2010 Dec; 12(6):1019-26. PubMed ID: 20635204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and evaluation of a Dean vortex-based micromixer.
    Howell PB; Mott DR; Golden JP; Ligler FS
    Lab Chip; 2004 Dec; 4(6):663-9. PubMed ID: 15570382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inertio-elastic focusing of bioparticles in microchannels at high throughput.
    Lim EJ; Ober TJ; Edd JF; Desai SP; Neal D; Bong KW; Doyle PS; McKinley GH; Toner M
    Nat Commun; 2014 Jun; 5():4120. PubMed ID: 24939508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-Way Particle Transport Using Oscillatory Flow in Asymmetric Traps.
    Lee J; Burns MA
    Small; 2018 Mar; 14(9):. PubMed ID: 29377529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical and experimental investigation of the deviation of microparticles inside the microchannel using the vortices caused by the ICEK phenomenon.
    Ghadamgahi SME; Shahmardan MM; Nazari M; Mansouri H; Hashemi NN
    Electrophoresis; 2024 Apr; 45(7-8):720-734. PubMed ID: 38111364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics.
    Yamada M; Seki M
    Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size-Dependent Inertial Focusing Position Shift and Particle Separations in Triangular Microchannels.
    Kim JA; Lee JR; Je TJ; Jeon EC; Lee W
    Anal Chem; 2018 Feb; 90(3):1827-1835. PubMed ID: 29271639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dean-Flow Affected Lateral Focusing and Separation of Particles and Cells in Periodically Inhomogeneous Microfluidic Channels.
    Bányai A; Farkas E; Jankovics H; Székács I; Tóth EL; Vonderviszt F; Horváth R; Varga M; Fürjes P
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel.
    Kwon JY; Kim T; Kim J; Cho Y
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33187390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulations of viscoelastic particle migration in a microchannel with triangular cross-section.
    D'Avino G
    Electrophoresis; 2021 Nov; 42(21-22):2293-2302. PubMed ID: 34080213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fundamentals of inertial focusing in microchannels.
    Zhou J; Papautsky I
    Lab Chip; 2013 Mar; 13(6):1121-32. PubMed ID: 23353899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel.
    Church C; Zhu J; Xuan X
    Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields.
    Zhu J; Xuan X
    Electrophoresis; 2009 Aug; 30(15):2668-75. PubMed ID: 19621378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrodynamic particle focusing enhanced by femtosecond laser deep grooving at low Reynolds numbers.
    Zhang T; Namoto M; Okano K; Akita E; Teranishi N; Tang T; Anggraini D; Hao Y; Tanaka Y; Inglis D; Yalikun Y; Li M; Hosokawa Y
    Sci Rep; 2021 Jan; 11(1):1652. PubMed ID: 33462348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing.
    Zhang Y; Zhang J; Tang F; Li W; Wang X
    Anal Chem; 2018 Feb; 90(3):1786-1794. PubMed ID: 29297226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.