These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28810234)

  • 21. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor.
    Tan Y; Wei X; Zhang Y; Wang P; Qiu B; Guo L; Lin Z; Yang HH
    Anal Chem; 2015 Dec; 87(23):11826-31. PubMed ID: 26542113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.
    Yu P; He X; Zhang L; Mao L
    Anal Chem; 2015 Jan; 87(2):1373-80. PubMed ID: 25495279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells.
    Sun D; Lu J; Chen Z; Yu Y; Mo M
    Anal Chim Acta; 2015 Jul; 885():166-73. PubMed ID: 26231902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes.
    Zhang Z; Tao C; Yin J; Wang Y; Li Y
    Biosens Bioelectron; 2018 Apr; 103():39-44. PubMed ID: 29278811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.
    Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles.
    Huo Y; Qi L; Lv XJ; Lai T; Zhang J; Zhang ZQ
    Biosens Bioelectron; 2016 Apr; 78():315-320. PubMed ID: 26638040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical Analysis of Target-Induced Hairpin-Mediated Aptamer Sensors.
    Su S; Ma J; Xu Y; Pan H; Zhu D; Chao J; Weng L; Wang L
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):48133-48139. PubMed ID: 32955243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling.
    Hou T; Li W; Zhang L; Li F
    Analyst; 2015 Aug; 140(16):5748-53. PubMed ID: 26165638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles.
    Zhang S; Xia J; Li X
    Anal Chem; 2008 Nov; 80(22):8382-8. PubMed ID: 18939854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and characterization of electrochemical dopamine-aptamer as convenient and integrated sensing platform.
    Azadbakht A; Roushani M; Abbasi AR; Derikvand Z
    Anal Biochem; 2016 Aug; 507():47-57. PubMed ID: 27173607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneous Electrochemical Aptamer-Based Sensor Surfaces for Controlled Sensor Response.
    Schoukroun-Barnes LR; Glaser EP; White RJ
    Langmuir; 2015 Jun; 31(23):6563-9. PubMed ID: 26005758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermo-responsive molecular switches for ATP using hairpin DNA aptamers.
    Goda T; Miyahara Y
    Biosens Bioelectron; 2011 May; 26(9):3949-52. PubMed ID: 21419618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Target-Triggered Assembly in a Nanopipette for Electrochemical Single-Cell Analysis.
    Ruan YF; Wang HY; Shi XM; Xu YT; Yu XD; Zhao WW; Chen HY; Xu JJ
    Anal Chem; 2021 Jan; 93(2):1200-1208. PubMed ID: 33301293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new electrochemical aptasensor based on electrocatalytic property of graphene toward ascorbic acid oxidation.
    Wu L; Xiong E; Yao Y; Zhang X; Zhang X; Chen J
    Talanta; 2015 Mar; 134():699-704. PubMed ID: 25618724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-free and reagentless aptamer-based sensors for small molecules.
    Zayats M; Huang Y; Gill R; Ma CA; Willner I
    J Am Chem Soc; 2006 Oct; 128(42):13666-7. PubMed ID: 17044676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new electrochemical aptasensor based on a dual-signaling strategy and supersandwich assay.
    Wei B; Zhang J; Wang H; Xia F
    Analyst; 2016 Jul; 141(14):4313-8. PubMed ID: 27188283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An aptamer-based electrochemiluminescent biosensor for ATP detection.
    Yao W; Wang L; Wang H; Zhang X; Li L
    Biosens Bioelectron; 2009 Jul; 24(11):3269-74. PubMed ID: 19443209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum dots electrochemical aptasensor based on three-dimensionally ordered macroporous gold film for the detection of ATP.
    Zhou J; Huang H; Xuan J; Zhang J; Zhu JJ
    Biosens Bioelectron; 2010 Oct; 26(2):834-40. PubMed ID: 20886696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immobilization Strategies for Enhancing Sensitivity of Electrochemical Aptamer-Based Sensors.
    Liu Y; Canoura J; Alkhamis O; Xiao Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9491-9499. PubMed ID: 33448791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.
    Pang J; Zhang Z; Jin H
    Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.