BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28810512)

  • 1. Co-digestion of rice straw and cow dung to supply cooking fuel and fertilizers in rural India: Impact on human health, resource flows and climate change.
    Sfez S; De Meester S; Dewulf J
    Sci Total Environ; 2017 Dec; 609():1600-1615. PubMed ID: 28810512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient.
    Kataki S; Hazarika S; Baruah DC
    Waste Manag; 2017 Jan; 59():102-117. PubMed ID: 27771200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion.
    Schaubroeck T; De Clippeleir H; Weissenbacher N; Dewulf J; Boeckx P; Vlaeminck SE; Wett B
    Water Res; 2015 May; 74():166-79. PubMed ID: 25727156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic co-digestion of cattle manure with rice straw: economic & energy feasibility.
    Silvestre G; Gómez MP; Pascual A; Ruiz B
    Water Sci Technol; 2013; 67(4):745-55. PubMed ID: 23306251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consequential environmental life cycle assessment of a farm-scale biogas plant.
    Van Stappen F; Mathot M; Decruyenaere V; Loriers A; Delcour A; Planchon V; Goffart JP; Stilmant D
    J Environ Manage; 2016 Jun; 175():20-32. PubMed ID: 27017269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid.
    Zhang B; Zhao H; Yu H; Chen D; Li X; Wang W; Piao R; Cui Z
    J Microbiol Biotechnol; 2016 Apr; 26(4):739-47. PubMed ID: 26718471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment.
    Garfí M; Castro L; Montero N; Escalante H; Ferrer I
    Bioresour Technol; 2019 Feb; 274():541-548. PubMed ID: 30562711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test.
    Kataki S; Hazarika S; Baruah DC
    J Environ Manage; 2017 Jul; 196():201-216. PubMed ID: 28284942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global warming mitigation potential of biogas plants in India.
    Pathak H; Jain N; Bhatia A; Mohanty S; Gupta N
    Environ Monit Assess; 2009 Oct; 157(1-4):407-18. PubMed ID: 18843544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture.
    Doyeni MO; Barcauskaite K; Buneviciene K; Venslauskas K; Navickas K; Rubezius M; Baksinskaite A; Suproniene S; Tilvikiene V
    Waste Manag Res; 2023 Mar; 41(3):701-712. PubMed ID: 36129010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review on anaerobic digestion of rice straw for biogas production.
    Mothe S; Polisetty VR
    Environ Sci Pollut Res Int; 2021 May; 28(19):24455-24469. PubMed ID: 32335832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas residues in the battle for terrestrial carbon sequestration: A comparative decomposition study in the grassland soils of the Greater Region.
    Tsachidou B; Hissler C; Noo A; Lemaigre S; Daigneux B; Gennen J; Pacaud S; George IF; Delfosse P
    J Environ Manage; 2021 May; 286():112272. PubMed ID: 33677337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-energy potential of available livestock waste and surplus agriculture crop residue: An analysis of 602 rural districts of India.
    Kumar R; Kumar V; Nagpure AS
    Sci Total Environ; 2023 Sep; 889():163974. PubMed ID: 37207774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic digestate water for Chlorella pyrenoidosa cultivation and employed as co-substrate with cow dung and chicken manure for methane and hydrogen production: A closed loop approach.
    Malolan R; Jayaraman RS; Adithya S; Arun J; Gopinath KP; SundarRajan P; Nasif O; Kim W; Govarthanan M
    Chemosphere; 2021 Mar; 266():128963. PubMed ID: 33218731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economy of fertilizer nitrogen through organic sources in rain-fed rice-legume cropping systems in West Bengal, India.
    Puste AM; Bandyopadhyay S; Das DK
    ScientificWorldJournal; 2001 Dec; 1 Suppl 2():722-7. PubMed ID: 12805756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Municipal waste compost as an alternative to cattle manure for supplying potassium to lowland rice.
    Bhattacharyya P; Chakrabarti K; Chakraborty A; Nayak DC; Tripathy S; Powell MA
    Chemosphere; 2007 Jan; 66(9):1789-93. PubMed ID: 16956645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental consequences of processing manure to produce mineral fertilizer and bio-energy.
    De Vries JW; Groenestein CM; De Boer IJ
    J Environ Manage; 2012 Jul; 102():173-83. PubMed ID: 22459014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative LCA of rice straw utilization for fuels and fertilizer in Thailand.
    Silalertruksa T; Gheewala SH
    Bioresour Technol; 2013 Dec; 150():412-9. PubMed ID: 24076147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.
    Rahman KM; Melville L; Fulford D; Huq SI
    Waste Manag Res; 2017 Oct; 35(10):1023-1033. PubMed ID: 28784057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient dynamics and decomposition rates during composting of sulphitation pressmud by different methods.
    Chandra R; Kumar N; Tyagi AK
    J Environ Sci Eng; 2007 Jul; 49(3):183-8. PubMed ID: 18476441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.