BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28810664)

  • 1. Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface.
    Lukose V; Walvoort MTC; Imperiali B
    Glycobiology; 2017 Sep; 27(9):820-833. PubMed ID: 28810664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The surprising structural and mechanistic dichotomy of membrane-associated phosphoglycosyl transferases.
    O'Toole KH; Bernstein HM; Allen KN; Imperiali B
    Biochem Soc Trans; 2021 Jun; 49(3):1189-1203. PubMed ID: 34100892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a dual domain phosphoglycosyl transferase reveals a ping-pong mechanism with a covalent enzyme intermediate.
    Das D; Kuzmic P; Imperiali B
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7019-7024. PubMed ID: 28630348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces.
    Allen KN; Imperiali B
    Curr Opin Struct Biol; 2019 Dec; 59():81-90. PubMed ID: 31003021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane association of monotopic phosphoglycosyl transferase underpins function.
    Ray LC; Das D; Entova S; Lukose V; Lynch AJ; Imperiali B; Allen KN
    Nat Chem Biol; 2018 Jun; 14(6):538-541. PubMed ID: 29769739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies.
    Seebald LM; Haratipour P; Jacobs MR; Bernstein HM; Kashemirov BA; McKenna CE; Imperiali B
    J Am Chem Soc; 2024 Feb; 146(5):3220-3229. PubMed ID: 38271668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation and Covariance in Small Bacterial Phosphoglycosyltransferases Identify the Functional Catalytic Core.
    Lukose V; Luo L; Kozakov D; Vajda S; Allen KN; Imperiali B
    Biochemistry; 2015 Dec; 54(50):7326-34. PubMed ID: 26600273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycoconjugate pathway connections revealed by sequence similarity network analysis of the monotopic phosphoglycosyl transferases.
    O'Toole KH; Imperiali B; Allen KN
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33472976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the architecture of the initiating phosphoglycosyl transferase from
    Dodge GJ; Anderson AJ; He Y; Liu W; Viner R; Imperiali B
    Elife; 2024 Feb; 12():. PubMed ID: 38358918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generalizable protocol for expression and purification of membrane-bound bacterial phosphoglycosyl transferases in liponanoparticles.
    Dodge GJ; Bernstein HM; Imperiali B
    Protein Expr Purif; 2023 Jul; 207():106273. PubMed ID: 37068720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the conserved reentrant membrane helix in the monotopic phosphoglycosyl transferase superfamily supports key molecular interactions with polyprenol phosphate substrates.
    Entova S; Guan Z; Imperiali B
    Arch Biochem Biophys; 2019 Oct; 675():108111. PubMed ID: 31563509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Modular Approach to Phosphoglycosyltransferase Inhibitors Inspired by Nucleoside Antibiotics.
    Walvoort MT; Lukose V; Imperiali B
    Chemistry; 2016 Mar; 22(11):3856-64. PubMed ID: 26662170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common themes in glycoconjugate assembly using the biogenesis of O-antigen lipopolysaccharide as a model system.
    Valvano MA
    Biochemistry (Mosc); 2011 Jul; 76(7):729-35. PubMed ID: 21999533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of glycan polymers produced by peptidoglycan glycosyltransferases.
    Barrett D; Wang TS; Yuan Y; Zhang Y; Kahne D; Walker S
    J Biol Chem; 2007 Nov; 282(44):31964-71. PubMed ID: 17704540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies.
    Seebald LM; Haratipour P; Jacobs MR; Bernstein HM; Kashemirov BA; McKenna CE; Imperiali B
    bioRxiv; 2023 Sep; ():. PubMed ID: 37786673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide.
    Lehrer J; Vigeant KA; Tatar LD; Valvano MA
    J Bacteriol; 2007 Apr; 189(7):2618-28. PubMed ID: 17237164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of novel small molecule inhibitors of the acetyltransferase activity of Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU).
    Sharma R; Rani C; Mehra R; Nargotra A; Chib R; Rajput VS; Kumar S; Singh S; Sharma PR; Khan IA
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3071-85. PubMed ID: 26563552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the architecture of the initiating phosphoglycosyl transferase from
    Dodge GJ; Anderson AJ; He Y; Liu W; Viner R; Imperiali B
    bioRxiv; 2023 Jul; ():. PubMed ID: 37398332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved cytoplasmic motifs that distinguish sub-groups of the polyprenol phosphate:N-acetylhexosamine-1-phosphate transferase family.
    Anderson MS; Eveland SS; Price NP
    FEMS Microbiol Lett; 2000 Oct; 191(2):169-75. PubMed ID: 11024259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-conserved sequence motifs are predictive of substrate specificity in a family of monotopic phosphoglycosyl transferases.
    Anderson AJ; Dodge GJ; Allen KN; Imperiali B
    Protein Sci; 2023 Jun; 32(6):e4646. PubMed ID: 37096962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.